Rubriigi ‘Füüsika arhiiv

Füüsika | Geneetika | Keemia | News | to.imetaja

Nobeli preemiad 2017: nullist lõpmatuseni

24.10.2017

 

See teaduskirjanik Tiit Kändleri lugu ilmus Maalehes 19. oktoobril osaliselt

 

Tänavused loodusteaduste nobelistid uurivad ainet nullist lõpmatuseni, inimene kaasa arvatud. Meid pidevalt läbivad gravilained, eriline meie valke kolmemõõtmeliselt esitav mikroskoop ja meie ööpäevarütmid on saavutused, mis ei vaja küsimust: aga milleks?

 

 

Füüsika. Universum. Gravilained

016. aasta alul teatati gravitatsioonilainete eksperimentaalsest kinnitamisest kahest mõõteseadmest koosnevas eksperimendis LIGO. Mõõdeti kahe, meist 1,3 miljardi valgusaasta kaugusel asuva hiiglasliku musta augu kokkupaiskumisel tekkinud gravilainet. Olen sellest Maalehes kirjutanud (vt 14. märtsi ML). 2017 ehitati mõõteseade täpsemaks ja tundlikumaks, et skeptikuid tulemuse usaldusväärsuses uskuma panna. Kui gravilainete püüdmine saab astronoomidele tavaliseks, muutub universum meie jaoks oluliselt läbipaistvamaks nii mineviku, Suurest Paugust pärinevate gravilainete suunas, kui tuleviku, mustade aukude tekke ja universumi piiride suunas.

Ajaloo irooniana õnnestus äsjane otsene gravitatsioonilainete registreerimine põhimõtteliselt sama seadmega, millega tehti kindlaks, et valgus levib igas taustsüsteemis ühe ja sama kiirusega. Albert Michelson ja Edward Morley tegid Eiunsteini relatiivsusteooriat kinnitava katse 1887. aastal andekalt lihtsal interferomeetril.

Valgusallikast tulev valgus jagatakse poolläbipaistva peegliga kahte omavahel risti kulgevasse harru ja kummagi haru otsas on peeglid, mis valguse tagasi peegeldavad. Poolläbipaistev peegel viib kaks eri teed kulgenud valguskiirt kokku. Kui mõlema kiire teed on olnud täpselt ühepikkused, siis kohtub valguslaine hari harjaga ja signaal kahekordistub, kui vahe on pool lainepikkust, siis üks laine kustutab teise. Meetod on väga tundlik, ent vajab eriti hoolsat isoleerimist mehaanilistest müraallikatest (vt graafik).

LIGO.ML

LIGO on gravilaineid kinni püüdnud veelgi paar korda ja nende sõsareksperiment, Pisa lähedal asuv itaallaste VIRGO teatas samast 2017. aasta augustis.

¤

¤

¤

¤

Tunnustatud ameerika füüsik Kip S Thorne California Tehnoloogiainstituudist oli 1980. aastatel üks mõõteseadme ehitamise plaanijaid ja algatajaid. Mul õnnestus teda kuulata Londonis 2009. aasta suvel peetud maailma teadusajakirjanike kongressil (vt foto allpool). Rainer Weiss on sakslane, kes töötab Massachussetsi Tehnoloogiainstituudis, Barry C Barish on ameeriklane, kes töötab California Tehnoloogiainstituudis. Miks ei antud Nobeli preemiat neile möödunud aastal, pole selge, nagu ei oska arvata, miks sadade ja sadade gravilainete püüdjate seast valiti just need kolm väärikaimat.

Kip.Thorne2.A

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Kiirkülmutist mikroskoop näeb valke kolmemõõtmelisena

 

Mikroskoobi leiutas 1620. aastatel keegi hollandlane ning see koosnes kahest läätsest. Selle abil uuris kangakaupmaas Antonij van Leeuwenhoeck 1660. aastatel kangaste kvaliteeti. Tänu oma uudishimulikkusele suutis ta avastada bakterid, vereosised, mikroorganismid ja konna vereringe. Saladus oli töötada äärmiselt väikeste läätsedega. Ühel säilinutest on paksus 1,2 millimeetrit ning mõlema külje ümaruse raadius 0,7 millimeetrit. Sellega saavutas ta 270-kordse suurenduse. Nobeli preemia asutamiseni oli jäänud veel 230 aastat. Kuid idee, et mikroskoop avab meile maailma suuruseni null, oli sama originaalne, kui mõte, et umbes samal ajal samuti hollandlaste leiutatud teleskoop avab meile maailma lõpmatuseni. Miks  mikroskoobi lääts valgust murrab, tuli tollal veel välja nuputada. Kuidas murrab, sellest kirjutas Isaac Newton oma 1709. aastal avaldatud ja kuulsaks saanud raamatus Opticks.

Mikroskoobi põhiviga on see, et valgusel on nii suur lainepikkus. See seab piiri, tekitades kõrvaldamatuid moonutusi. Sestap võeti nähtava valguse asemel käiku üha pisema lainepikkusega kiired, kuni leiutati elektronmikroskoop: elektroni lainepikkus on vähimaid, mida teame. Sellega sai hakata nägema aatomeid. Teisalt leiutati, et lühilaineliste röntgenkiirtega saab uurida kristallide atomaarset ja molekulaarset ehitust. Konrad Röntgen oli esimene füüsika nobelist aastal 1901. Elektronmikroskoopia hakkas arenema 1930. aastatel ja sellega seostub nii mõnigi Nobeli preemia.

Aatomjõumikroskoop suudab eristada molekule ja aatomeidki, kuid seda vaid tahke aine, eelistatult kristalli pinnal. Nõnda on elektronmikroskoopia ja aatomjõumikroskoopia pakkunud meile küll toreda sissevaate elutusse nanomaailma alates nanotorudest kuni grafeenini, teiselt poolt aga viiruste maailma, avades hindamatu võimaluse arendada uusi materjale ja võidelda nakkushaigustega.

Kuid see, mida biofüüsik vajab, on uurida suurte molekulide nagu valgud käitumist alul lahuses, seejärel rakkudes. Juba vähemalt 40 aastat on teada, et ühe sellise võimaluse pakub fluorestsents. 1950. aastatel hakati Cambridge’s valgumolekule mõõtma röntgenkiirtega, need enne kristalliseerides. Nõnda avastati ka DNA topeltheeliksiline ehitus.

1970. aastatel arendati välja fluorestsentsi korrelatsioonspektroskoopia. Kui laserkiir fokusseerida, on selles ruumalas eriliselt vähe kiirgavaid molekule ja nõnda saab fluorestseeruva kiirguse footoneid loendades ja nende statistikat rehkendades teada nii nende liikumise kui keemiliste reaktsioonide kohta. Aastaks 2000 valmis esimene fluorestsentsmikroskoop, mille eest võideti Nobeli preemia 2015. aastal.

Ja ennäe – ka 2017. aasta Nobeli preemia, sedapuhku keemiapreemia, omistati uut laadi mikroskoopia leiutamise eest, millega saab näha elusorganismide suuri molekule kolmemõõtmelisena. Šveitslane Jacques Dubocher (Lausanne’i ülikool), sakslane Joachim Frank (Columbia Ülikool, USA) ja šotlane Richard Henderson (Cambridge) töötasid aastaks 2013 välja uue meetodi – täiustatud elektronmikroskoobi, mida nimetatakse krüostaatiliseks, kuna biomolekulid ühel mõõtmise astmel külmutatakse ülikiirelt vedela etaani ja lämmastikuga.

Makromolekulide struktuuri on mõõdetud ennegi, ja nimelt tuumamagnetresonantsi meetodil. Selle meetodi täiustamise eest said Nobeli preemia Kurt Wüthrich ja Richard Ernst ning Eestis viis meetodi maailmatasemele Endel Lippmaa. Ent elumolekulid ja nende kuju muutumine on nii keeruline, et nende taipamiseks tuleb rünnata mitmelt poolt.

 

Öö ja päev meie kehades

Kui und ei tule, on öö pikk. Kuigi objektiivselt selle pikkus ei muutu. Maa pöörleb meist sõltumatult. Elusolendites kulgevat kella, mis on seotud öö ja päeva vaheldumisega, on uuritud juba vähemalt 2400 aastat, mil kreeka laevakapten Androstenes kirjutas tamarindipuu lehtede orienteerumisest läbi ööpäeva. On jõutud teadmiseni, et unetuse üks põhjusi on ööpäevarütmi ehk peenemalt tsirkadiaanrütmi segiminek. Muuseas – inimese ööpäevarütm ei ühti Maa pöörlemise rütmiga, vaid on umbes 24 tundi ja 11 minutit. Isegi nüüdsed nobelistid vist ei tea, miks. See-eest on nad välja uurinud, milline geen kontrollib ööpäevarütmi. Selles abistas neid geneetikute lemmikloom äädikakärbes. Nad isoleerisid geeni, mis kodeerib valku, mis koguneb rakku öösel ja laguneb päeval. Nüüd teame, et ka teised paljuraksed reguleerivad oma ööpäevarütmi sama geeni toel.

Ameeriklased Jeffrey C. Hall (Brandelsi ja Maine’i Ülikoolid), Michael Rosbash (Brandelsi Ülikool) ja Michael W. Young (Rockefelleri Ülikool) lähenesid probleemile igaüks möödunud sajandi lõpukümnenditel veidi erinevalt, ent kokkuvõttes said teada, mida see täheühendiga PER tähistatav valk teeb. 1994. aastal avastas Young teisegi geeni, timeless ehk ajatu, mis kodeerib TIM nimelist valku ja on vajalik ööpäevakella õigeks tööks, tagades tagasiside.

Nii et teame, millised geenid on mängus, kui meie ööpäevakell õigesti ei käi, kuid kuidas neid parandada, on iseasi.

 

 

 

 

 

Füüsika | News | to.imetaja

Teadus on kõigile avatud

24.10.2017

See teaduskirjanik Tiit Kändleri esse ilmus ajakirjas Eesti Loodus septembris 2017

 

 

Iga inimene peab sageli lahendama tema jaoks uusi küsimusi. Lahendused muutuvad olude muutudes. Nõnda tegutseb tavainimene enese teadmata teadlasena.

 

„Ma tean seda.“ Kui sageli olete seda lauset kuuldavale toonud? Sõna „teadma“ esineb nende saja sõna seas, mis on olemas kõigis maailma keeltes. Selle väite leidsin Oxfordi Ülikooli matemaatikaprofessori ja Simonyi nimelise, „üldsuse poolt teaduse mõistmise“ õppetooli pidaja Marcus Du Sautoy sel aastal avaldatud raamatust „What We Cannot Know“ („Mida me teada ei saa“). Võrratu matemaatik ja teaduskirjanik ning -lektor Sautoy jõuab füüsika ajalugu vaadeldes järeldusele, et muidugi jääb teadus alati alla täielikust teadmisest. „Ma kaalutlen, kas poleks parim ütelda, et me ei saa kunagi kindlalt teada, mida me teada ei saa.“

Jalgratta leiutamine

¤

¤

¤

¤

¤

¤

¤

Foto: Tiit Kändler

Projekt ITER valmib Prantsusmaal härgamisi, ent Karlsruhe Tehnikainstituudis keevitati selle reaktorit juba 2009. aastal.

 

Solvavalt triviaalne tulemus 500-leheküljelise raamatu kohta? Arvan, et mitte. Teaduse ajaloost saab tuua hulgi näiteid, et oma aja tunnustatuimad teadlased eitasid võimalust teada saada, mida me praegu peame kooliteadmiseks (universumi vanusest algosakeste maailmani välja).

Lõplik lõpmatus

Praegu kinnitab arvestusväärne hulk kosmolooge, et meie universum on lõplik. Või vähemalt, et me ei saa kunagi teada, kas see on lõpmatu. Küsimus, mille esitab teile kuueaastane laps. Du Sautoy jõuab oma raamatus järeldusele, et me saame kasutada matemaatikat, et lõplike vahendite abil tõestada lõpmatuse eksisteerimist. Või veel – Sautoy ise on paarkümmend aastat muude tegevuste seas pusinud ühe arvuteooria teoreemi tõestamise nimel. Nii nagu see matemaatikute seas loomulik on. Nõnda et võib-olla siiski eksisteerib lõputu hulk paralleeluniversumeid, mida ju ühe matemaatika kohaselt näidatud on, kuid mille kinnituseks me veel katseid teha ei oska. Kuid me ei osanud ju katseliselt ka tõestada, et gravitatsioonilained on olemas, kuni 2016. aasta 11. veebruaril kuulutaati välja LIGO eksperimendi tulemused: 2015. aasta septembris registreeris kaks sõltumatud interferomeetrist detektorit kahe hiiglasliku, Maast 1,3 miljardi valgusaasta kaugusel asuva musta augu ühinemisplahvatusest välja paiskunud gravitatsioonilained.

Gravilainetest loodetakse saada sellist teavet universumi hiiglaslike objektide kohta, mis siiani on olnud varjul. Täpselt 100 aastat hiljem, kui Albert Einstein ennustas gravitatsioonilained ja Karl Schwarzschild mustad augud, mõõdeti kahe musta augu ühinemisest Maale jõudnud lained. Gravitoni pole veel leitud. Vähe sellest, äsja teatas Ameerika Astronoomiaühing, et saadi raha LIGO andurite 25 protsenti tundlikumaks muutmiseks ning tuleval aastal võetakse ette pikem mõõtmine. Nagu nägime, polnud ühest mõõtmisest Nobeli preemia saamiseks piisav.

Homo sai Homo sapiens sapiensiks, kui umbes 70 või 50 tuhande aasta eest leiutas keele, mis võimaldas hakata vestma väljamõeldud lugusid. Müüdid, religioonid,  Chevrolet, Armani, paberraha, sotsialism, liberalism. Nende meemide jõud on usaldusel – kui usaldus variseb, varisevad ka lood.

Kreeka jutuvestja Aisopos pajatas umbes sellise loo. Elas kord tähetark ja kõndis mööda metsa äärt, imetledes taevas säravaid tähti. Kõndis, kuni kukkus auku, mille olid talumehed kaevanud tiigri püüniseks. Välja ta sealt ei suutnud ronida. Hakkas siis appi karjuma. Küla serval elanud talumees tuli kohale ja küsima: „Kes sa sihuke oled?“ „Olen tähetark,“ vastas tähetark. „Kui sina väidad, et oled tähetark ja tead meist lõputult kaugel olevate tähtede saladust, kuid oma silme ette ei näe, siis ongi su koht augus,“ kostis talumees ja läks koju tagasi.

Võib-olla pani Aisopos selle loo pihta hiinlastelt, aga nüüd, mil Euroopa 16.-17. sajandi teadusrevolutsiooni saavutused ja Euroopa muusika on hiinlased pihta pannud, pole sellest lugu. Kui oma õpetajat, akadeemik Endel Lippmaad tema biograafia kirjutamiseks kaks aastat intervjueerisin, küsisin kord, miks ta teadust teeb. Ta vaatas mind oma kelmikas-läbitungival pilgul ja vastas: „Lõbu pärast, nii nagu teiegi kirjutate!“ „Poliitikat tegin vajadusest.“

 

Universumi rahvas

Me elame maailmas, mida nimetame universumiks. See asub nulli ja lõpmatuse vahel. Kõige põnevamad asjad juhtuvad eimiskis ehk vaakumis ja seal, kuhu me näha ei saagi. Kui meie ei saa miskit näha, siis on meil varuks üks imepärane asi – matemaatika. Matemaatikaid on lõputu hulk. Algebra ja geomeetria, rühmateooria ja hulgateooria ja mis veel kõik. Me võime vaielda, kas meie universum on lõplik või lõputu, kuid matemaatikaga oleme tõestanud, et pole vahet, kas vaatame universumit arvtelge nulli ja ühe vahel või nulli ja lõpmatuse vahel.

Sest lõpmatusi on mitut sorti, nii nulli ja ühe kui nulli ja lõpmatuse vahel.

Selleks, et füüsikast lõbu tunda, pole vaja teada kogu füüsika ajalugu. Pole vaja teada mingeid valemeid. Teadusest kirjutamine on nagu teadus ise: tähtis on liikumine, mitte tulemus. Füüsika libiseb meil käest, selle seadused täpsustuvad, kui matemaatika teoreemid on jäävad, kui need on kord tõestatud. Pythagorase teoreem kehtib lamemaal ikka, kuid Newtoni geniaalsed seadused vajavad täpsustamist.

Jeesus ütles evangelistide vahendatuna: „Minu riik pole siitilmast.“ Teisal jälle kinnitas vastupidist. Söandan parafraseerida: matemaatika riik pole siitilmast ja on kah.

Teadusest kirjutamisel on mu meelest ilmtähtis püüda kolme varblast korraga, need on kolm T-d.

Taust. Teravmeelsus. Teadmine. Sama reegel kehtib teaduses.

Taustata teadusuudis on nagu ühe tiivaga varblane. Sööb, ent ei lenda. Teravmeelsuseta teaduslugu on nagu sabata varblane: sööb ja lendab, aga kukub ninali. Teadmiseta, teadmist andmata on teaduslugu, nagu ka teadus pime varblane: sööb ja lendab, aga ei tea, kuhu.

Hea teadus on teravmeelne, selle tuuma tabamine on nagu hea komöödia, tegijale sageli tragikomöödia.

ITER3A

¤

¤

¤

¤

¤

¤

¤

Karlsruhe Tehnikainstituut: inimese parim leiutis jalgratas sobib toetuma kõrgtehnoloogilisele hiiglasele.

Foto: Tiit Kändler

Teadusest kirjutades ei tohi unustada, mis on kultuur. Meie rahvuskaaslase, Rootsis töötava, kultuurimajandust uurinud ja rahvusvaheliselt tunnustatud teadlase Tõnu Puu määratluses: kunstid ja teadus. Kunstides kehtivad samad reeglid, mis teaduses.

Parim viis kadunud asja leidmiseks ei ole seda meeleheitlikult otsida, vaid lasta sellel olla. Küll see varem või hiljem välja tuleb. Kes on tegelnud kunstide ja teadusega, teab, millest kõnelen. Sellepärast pole olemas teadusuudist ajakirjanduslikus mõttes. Mees kukub redelilt hopsti!, uudis! Newton ja Einstein jõudsid selleni, miks kukub ja kuidas kukub, läbi aastakümneid kestnud töö.

On küsimusi, millele polegi vastust. Kuid neist saab osavalt, matemaatika abil mööda hiilida.

See on teadusest kirjutamise rõõm, aga ka õnnetus. Kiuidas sa müüd teoreetiku tagumikutunde? Sest teoreetiku, matemaatiku jaoks pole tähtis niivõrd pea (ilma milleta muidugi ei saa), kui vastupidav tagumik.

Teadusest kirjutamisel ja pajatamisel on neli müüdavat teemat, neli T-d needki. Tervis. Toit Tänane ilm. Tore seks.

Scientific American kinnitab mu juttu. 2015. aastal avaldatud maailma 25 auväärsema teadusinstitutsiooni artiklitest olid loetavaima 25 seas ka:

Uus, bakterite resistentsuse vastane antibiootikum (tervis). Globaalne soojenemine (ilmastik). Apokalüptiline liikide väljasuremine (toitu jääb vähemaks). Seksistlikud arvutimängud.

Lohutust pakub mulle üks artikkel 25-st, milles tõestati, et maamunal kasvab 3,04 triljonit puud. See annab lootust: inimese uudishimu pole kadunud ehk minu moto: „Igaüks on teadlane!“ kehtib.

Lõpetan, kust alustasin, jutuvestja Aisopose looga. Lõvikütt luusis, püss käes, mööda metsa ja uuris muudkui oma jalge ette. Talle tuli vastu puuraidur, kirves käes, ja küsima: „Mida sa maast otsid?“ „Otsin lõvi jälgi,“ vastas puuraidur.“ „Mis sa neis jälgedest otsid, ma parem näitan sulle, kus on lõvi,“ pakkus puuraidur. „Oh ei,“ kohkus kütt, „ma ei otsi lõvi, vaid lõvi jälgi.

Lootkem, et teadus ja sellest kirjutajad ei vaata vaid nina püsti taevasse ja julgevad otsida ka lõvi ennast. Kui vaid inimese ajumahust piisab.

 

 

 

 

Füüsika | Keemia | News

Nobelist Kurt Wüthrich sai Eesti teadusest aimu, kohanud Endel Lippmaad

06.10.2017

See teaduskirjanik Tiit Kändleri intervjuu ilmus ajalehes Postimees 16. septembril 2017

 

Kuigi tähistame 15. septembril oma erakordse akadeemiku ja poliitiku Endel Lippmaa 87. sünniaastapäeva, mitte sünnipäeva, pole tema elutöö meist lahkunud. Eesti Teaduste Akadeemia alustas 12. septembril tema mälestusloengutega, esimene Endel Lippmaa nimeline medal anti nobelistile, šveitsi keemikule ja biofüüsikule Kurt Wüthrichile. Kohal viibis ja pidas kõne ka Eesti Vabariigi President Kersti Kaljulaid.

 

Kõigekülgne teadlane Endel Lippmaa tõestas oma eluga, et „tippteadust saab teha igasugustes oludes“. Nõnda sõnastas esimese akadeemik Endel Lippmaa nimelise medali kätteandmistseremoonial kõnelnud akadeemik ja Helsinki Ülikooli biotehnoloogia instituudi professor Mart Saarma. Endel Lippmaa nimelise medali, metallist E-tähe, riputas laureaadile kaela TA president Tarmo Soomere. Kurt Wüthrichile kohtus Lippmaaga esimest korda 1970. aastate alul ning nautis meie akadeemiku vahedat mõistust ja erilist eruditsiooni. Seejärel esinenud Eesti Vabariigi President Kersti Kaljulaid sõnas: „Lippmaa oli liikuja vaenlase koridoris“. Tõepoolest, meie Lippmaa oli  tuumamagnetresonantsi (TMR) esimesi edendajaid maailmas ning teisalt Eesti iseseisvuse võtme lahtimuukija ja MRP originaalprotokollide hankija.

Lippmaa.TsitaatA

Lippmaa keskendus erinevalt enamikust TMR teadlastest, kes kasutasid molekulide kompamiseks nende koostises oleva vesiniku tuuma, raskematele aatomitele. Tema ja ta kaasteadlased mõõtsid süsiniku ja hapniku, räni ja alumiiniumi tuumade asendit. Eesmärk oli mõista, milline on erinevate suurte molekulide ruumiline struktuur.

Eestile pöördelistel aastatel loobus Lippmaa suurest osast teadusest ja keskendus poliitikale.  Nagu ta mulle tema biograafia kirjutamise käigus 2010. aastal kirjeldas, kasutas ta teaduslikke meetodeid, et riigi vabadus taastada. Sellele juhtis elegantselt tähelepanu Karsti Kaljulaid: „Lippmaa eesmärk oli, kuidas teada saada, mida teada saada.“

Nõnda ilmus Lippmaa võlujõul tollase N Liidu juhtkonna ette kui Issanda nuhtlus MRP protokolli salajase lisa originaalne kehastus. Osava manipuleerimisega saavutasid Lippmaa ja teised Eesti esindajad NL Ülemnõukogu istungil 1989. aastal otsuse, mis mõistis kehtetuks MRP lepingu ja tunnistas sellega, et Eesti väärib vabadust. Seejärel saavutas Lippmaa sellele otsusele ka NL Riiginõukogu kinnituse. „See oli Riiginõukogu esimene ja viimane otsus,“ kinnitas Lippmaa, misjärel naasis täie jõuga teadusmaailma.

President Kaljulaidi sõnul on aeg tavaliselt lühike, et saada tagasisidet teadlastelt, kui mingi otsus on tehtud. „Kui saame uskuda teadlast ja tema meetodit, siis meie ühiskond, digiühiskond toimib,“ ütles ta ilmse vihjega Lippmaa taoliste teadlaste üliolulisele.

Eesti Teaduste Akadeemia peamaja saal Tallinnas Toompeal oli Lippmaa mälestusloenguks tulvil akadeemikuid, Lippmaa pereliikmeid, tema kunagisi kolleege, õpilasi – Lippmaa mõistuse ja lumma austajaid.

 

Intervjuu Kurt Wüthrichiga

Wüthrish.ETL.medalA

Kurt Wüthrich on vähemat kasvu, ent vilgas, samas kõneviisilt pigem rahulik kui tormav. Tüüpilise Šveitsi sakslasena on ta jutt justkui ettevaatlik, ent pigem see ei tõtta, ometi olles täpne ja kohati värvikas. Intervjueerin teda TA peamaja ühes 2. korruse toas, vahetult peale tema loengut ja AK intervjuud. Istume tugitoolidesse ja ma räägin oma taustast, sellestki, et töötasin Lippmaa sektoris, kui ta paar korda meid külastas, ometi ei tegelnud TMR meetodiga. Ta kuulab huviga. Kaelas on tal Endel Lippmaa nimeline medal: suur metalne E-täht. Alustan.

Te olete sündinud maal, talumehe pojana. Te ei otsustanud just liiga noorelt, et teadlaseks hakata. Millal te tundsite, et teadlaseks olemine on teie põhieesmärk?

Ma olin lummatud loodusest, tahtsin saada metsainseneriks. Ma õppisin spordiga seotud alasid ega plaaninud saada teadlaseks. Näiteks unistasin saada profijalgpalluriks, spordiõpetajaks kas keskkoolis või ülikoolis. Kuid meie koolis moodustus õpilaste rühm, mis hakkas ülikoolitasemel õppima matemaatikat ja füüsikat. Siis hakkasin tegema mõningaid katseid, kuid ma polnud nii edukas, et otsustada teadustöö kasuks.

 

Te olete minu kohatud teadlastest erand – et keegi on saanud teadlaseks spordi kaudu. Professor Lippmaa oli spordi suhtes üsna ükskõikne.

Tõepoolest on sport mulle palju andnud. Ma mängin jalgpalli tänaseni, hoolimata mõne aasta tagusest jalavigastusest.

 

Te tõite oma loengus ka näite – kui mõneteist aasta eest oli magnetresonantsi kujutis teie põlvest üsna udune, kuid ometi näitas spordivigastust, siis möödunudaastane pilt on terav ja näitab, et vigastus on paranenud.

Jah, TMR on edenenud – kujutage ette, et seda meetodit saab kasutada molekulist inimeseni ehk läbi üheksa suurusjärgu! Teist sellist annab otsida.

 

Te olete olnud ka spordiinstruktor. Kas tegu oli mäesuusatamisega?

Jah, nii see oli nooruses. Hiljem, 1984. aastal olin pettunud, et mu ideid peeti vääraks ja otsustasin, et hakkan taas vaid spordiga tegelema. Olime seostanud TMR signaali õigete vesiniku tuumadega makromolekulis, ja seeläbi leidnud võtme valgu struktuuri ruumiliseks pildistamiseks.

 

Praeguseni olete te Uus-Meremaa väärika Mercury Bay Game Fishing Club kalastusklubi liige, nii nagu oli näiteks oli Hemingway. Kas olete ka Šveitsis kalu püüdnud?

Poisina küll. Olen püüdnud maailma eri paigust, ka meredest üsna suuri kalu. See klubi on oluline paik, et kohata teraseid inimesi üle maailma.

 

Olete olnud huvitatud prantsuse kultuurist – kirjandusest, muusikast. Millist laadi kirjandusest näiteks?

Ma käisin koolis paikkonnas, mis asus saksa ja prantsuse keelt kõnelevate kogukondade piirimail. Mulle meeldis kõik prantsuspärane, klassikaline kirjandus eelkõige, aga ka veinid ja köök.

 

Teie töö tulemustes valkude struktuuri uurimise alal kaheldi 1984. aastal üsna sügavalt. Milles oli asi?

Nagu ma oma loengus rääkisin, olid kahtlejad kristallograafid, kes mõõtsid samu molekule tahkes maatriksis. Ja see oli enam kui kahtlus, mu tulemusi peeti suisa valeks ja nõnda lahkusin ülikoolist. Valkude sekundaarset struktuuri, mida meie nägime, nägid ka kristallograafid. (Intervjueerija selgitus: primaarseks struktuuriks on üksikute aatomite järjestus valgus, kui see niidina sirge oleks; sekundaarne struktuur on eluliselt oluline ja näitab, kuidas valk ennast lahuses tegelikult kokku voldib. Kritallograafid mõõdavad kristallide ehitust.) Ja kristallograafide saadud struktuur oli täiesti erinev. Meie oma oli täpne, nende oma vale. Toimetaja otsustas meie struktuuri avaldada. Ja läks seitse aastat, enne kui nad tunnistasid, et nad eksisid. Nii et see oli lihtsalt business.

 

Kuidas te hoolimatust suhtumisest jagu saite ja ei murdunud?

Ma lahkusin ülikoolist ja talviti tegelesin suusatamisega. Ning suviti jooksin ma mägedes. Ma ei läinud kahe aasta jooksul ühelegi teaduskogunemisele, vaid panin samm-sammult kirja, mida me olime teinud. Kuni selgus, et oleme kõik teinud õiges suunas, nautisin suusatamist. Kui asi ei õnnestu, pead jätkama, selleks aga pead võitma iseennast.

Minu eesmärgiks oli rakendada TMR strukturaalses bioloogias. 30 aasta eest saime näha vee molekuli, praegu on nähtud 150 000 bioloogilist struktuuri, ent me ei tea ikka, kuidas valk töötab. Tuleb mõista selle kokkukeerdumise teed ja funktsiooni.

 

Kas jätkete praegu loengupidamist Zürichi ETH-s?

Jah, ja mul on seal töörühm, nii nagu Californias ja Hiinas. Seal Hiinas on viisiks, et ehitatakse valmis tohutu maja, varustatakse see tipptehnoloogiaga. Ja siis jäädakse ootama, et äkki keegi värvatuist avaldab midagi ajakirjas Nature. Püüan juhtida tähelepanu, et päris nii need asjad teaduses ei käi.

 

ETH-ga on olnud seotud ka Nobeli laureaat Richard Ernst, keda mul on õnnestunud Tallinnas intervjueerida.

Jah, me oleme koos töötanud. Ta oli siin ka 1973. aastal, kui mina esmakordselt Eestis olin. Teist korda olin Eestis 1977. aastal.

 

Kui te esmakordselt Endel Lippmaad kohtasite, mis teid temas köitis?

Meil oli ühine huvi TMR vastu. Ta oli äärmiselt vahe, ääriselt täpne oma ideede sõnastamises. Tema kaudu sain teada, et Eestis tehakse tippteadust. Endel Lippmaa laboratoorium oli 1970. aastatel üks universumi singulaarsusi. Sedasama arvas ka Richard Ernst.

 

Daily Telegraph nimetas Zürichit parimaks linnaks maailmas, kus elada. Mida teie Zürichist arvate?

Mina elan Bernis ja Bern on Zürichist palju meeldivam linn. Zürichis on suurepärane lennujaam, see on minu jaoks tähtis. Seal on kõrge klassiga muusikateater, ooper – kuhu ma küll ei lähe, sest palju on tööd teha. Seal on head restoranid, kuid see kõik on väga kallis. Ma ei tea, kuidas nad oma järjestuse said, kuid minu jaoks on elamine Californias La Jollas parim paik.

 

Kes vähegi on roninud magnetresonantsi kuvamise aparaati, śee teab, kui suur see on ühes kõigi oma vilede ja piiksudega. Kas kunagi tuleb aeg, et TMR aparatuur muutub väikeseks, nagu on muutunud arvutustehnika seadmed?

Muu tehnika muidugi muutub, kuid probleem on selles, et te peate olema tugevas magnetväljas. Kuid pigem peab funktsionaalne magnetresonantskuvamine jõudma igasse haiglasse.

 

Kas teie pika karjääri jooksul on olnud midagi, mis on teid tõeliselt üllatanud? Lippmaa oli mees, kes ei üllatunud kunagi.

(On üllatunud ja mõtleb pikalt. Muigab.) Esimene kord oli, kui ma nägin omaenese hemoglobiini molekuli, see oli siis absoluutselt uus võimalus. Kui te teete midagi tõelisest entusiasmist, siis on vaimseid üllatusi palju. Kordan veelkord – selle meetodiga saab mõõta nii inimese kui raku, nii bakteri kui valgu molekuli struktuuri. Seega on iga saavutus üllatav.

 

Te uurite valkude elu. Aastal 2000 vallandus suur eufooria, kui teatati inimese genoomi järjestamisest. Loodeti, et nüüd saame teada haiguste kõik põhjused. Ometi pole nii läinud. Mis on organismile tähtsam – kas genoom või proteoom, valkude hulk. Endel Lippmaa rõhutas Geenivaramu rajamisel, et koguda tuleks materjali mitte ainult genoomi, vaid ka proteoomi uurimise tarbeks.

Jah, nii see on, kuid alles nüüd hakkame mõistma, kuidas valk end kolmemõõtmeliseks kokku pakib. Peame oskama ka geenijärjestuse pealt valgu kokkuvoltinist ennustada.

 

Kahtlemata peab selles kehas olema vedruvaim, nõnda kiirelt suisa hüppab Wüthrich püsti madalast tugitoolist, kui intervjuu lõpeb ja ta soovib ajakava korraldajalt, et teda enne hotelli viimist sõidutataks läbi vanalinna. Soovin talle järgmise aasta 4. oktoobriks rõõmsat 80. juubelit ja luban samal päeval, mis on ka minu sünnipäev, teda meeles pidada.

 

Need on kastikesed, võib illustreerida portreekestega, saadan igaks juhuks ka ETH foto

 

Endel Lippmaa süvenes teadusesse lapsena

 

Endel Lippmaa sündis 15. septembril 1930, nõnda oleks 30. juulil 2015 surnud Lippmaa saanud eile 87-aastaseks. Tema isa, akadeemik Teodor Lippmaa heakskiidul hakkas poiss Tartu Ülikooli botaanikaaias elades tegema keemia- ja füüsikakatseid. Isa ei pannud pahaks paugutamistki. Seejärel tuli raadiovaimustus, ta teenis aparaatide parandamisega väikest raha oma raadiodetailide ostmiseks.

Ise pidas ta äärmiselt kasulikuks, et sai gümnaasiumis korraliku ladina keele oskuse, mis kulus Eesti iseseisvuse järjepidevuse tõestamisel ära. Endel Lippmaa perekond hukkus 27. jaanuaril 1943 vene lennukipommi läbi, kui tema kinos oli. Lippmaa kolis Tallinn-Nõmmele tädi juurde ja astus Nõmme gümnaasiumisse.

TPI-sse astus ta põlevkivikeemikuks, kuna orvuna oli tal vaja raha ja seal oli suurem stipendium. Lippmaa abikaasa Helle Lippmaa on keemik, neil on kaks füüsikuharidusega poega Jaak Lippmaa Ja Mikk Lippmaa.

„Iga uus asi, kui seda järjekindlalt teha ja kui see on õige, on destruktiivne,” kinnitas ETL, nagu teda kolleegid kutsusid. Lippmaa ei olnud üheülbaline, et saaksime teda seostada vaid ühe tegevusvaldkonnaga. Nüüdse sõnapruugi kohaselt oli Lippmaa tuumamagnetresonantsi maaletooja, tema juhendamisel ehitati Eesti esimene spektromeeter. Esimesena hakkas ta kasutama ülijuhtivad magneteid, et mõõta vesinikutuumast raskemate aatomite tuumasid.

Aastal 2012 oli Lippmaa artikleid viimase 20 aasta jooksul tsiteeritud 6731 korda ja sel aastal 330 korda.

Uuendused tuumamagnetresonantsis, mille eest Šveitsi füüsik Richard Ernst 1991. aastal Nobeli preemia sai  „panuse eest kõrge lahutusvõimega TMR spektroskoopia metodoloogia arendamisel” leiutasid Lippmaa ja tema kolleegid pisut varemgi. Kuid Eesti teadlastel  ei olnud võimalik oma tulemusi kiiresti avaldada, mujal kui AMPERÉ-i ühingu Ungari konverentsi materjalides –, natuke varem, kui Ernsti avaldatud töö, milles ta kahemõõtmelist tuumaresonantsi kirjeldas.

Ise jagas Lippmaa oma teadustöö järgnevalt: analüütilise aparatuuri ehitamine, tuumamagnetresonantsi spektroskoopia, bioloogia uus paradigma (mida ta eriti rõhutas), neutriino massi massiivsus, keskkonnakaitse: õhk. fosforiit, diktüoneema, energeetika.

Lippmaa juhtimisel saavutati maailma kõige kiirem TMR mõõteraku pööritaja, mille abil aineid endisest palju täpsemalt mõõta sai.

Fosforiidisõja lahingud, MRP avalikustamine, kogu senise poliitilise ja majandusliku süsteemi krahh saabusid 1987. –1989. aastatel, samal ajal avaldas Lippmaa ja tema uurimisrühmmaailma olulistes teadusajakirjades artikleid ülijuhtivuse kohta, järeldades, et tegu ei ole metalse juhtivusega. Kuid meie teadlaste esimesi sel teemal avaldatud artikleid ei uskunud keegi.

„Poliitika oli teadustöö rakendus teisel alal, ei mingit vahet,” ütles ta ise. 1989. aasta jõululaupäev oli Moskva Kremlis Eesti jaoks ärev. Pidi selguma, kas oma istungit pidav NSV Liidu rahvasaadikute kongress, kõrgeim võim Nõukogude Liidus, tühistab Molotovi-Ribbentropi pakti salaprotokollid ja hindab nende osa Balti riikide okupeerimisel või mitte. Hääletati „jah“.

Teist korda pärast MRP võitlust kogunes Eesti tipp-poliitikuid Moskvasse enne Riiginõukogu istungit 6. septembril 1991. Oli vaja teha lobitööd, et Riiginõukogu Eesti iseseisvust tunnustaks. Lippmaa oli kohal. Tunnustus saabus. „Sellega oli mu missioon lõppenud,“ tunnistas Lippmaa.

Siiski osales ta veel ministri ja Riigikogu liikmena riigi juhtimises. Teadlasena lõi ta Eestile kindlad sidemeid Euroopa Tuumauuringute keskuse CERN-iga ja osales projektis TOTEM, olles paljude ühisartiklite autorite seas.

Tänu Lippmaale saime nii varakult Interneti ja domeeni .ee, selle asemel et saada .ru. Tema oli esimene, kes hakkas rakendama personaalarvuteid, tema kaastöölised ehitasid nii sihtotstarbelisi arvutid kui ka esimese personaalarvuti.

Allikas: Tiit Kändler, Endel Lippmaa, Mees parima ninaga, 2012

 

 

 

Nobelist Kurt Wüthrich sai teadlaseks spordi kaudu

Sündis 4. oktoobril 1938 Aabergis Šveitsis, elas Berni lähedal farmeri perekonnas. Lähedane kontakt loodusega tekitas huvi loodusteaduse vastu. Bioloogiliste makromolekulide TMR spektroskoopiaga tegeleb alates 1967. aastast. Õppis Berni ülikoolis, doktorikraadi tegi 1964 Baseli ülikoolis, kus õppis ka võistlusspordiga seotut. 1957 – 1962 oli suusainstruktor mäekuurortides. Töötas Ameerikas, 1969 siirdus Zürichi ETH-sse. Seejärel ringles maailma eri teaduskeskustes. Oli Rahvusvahelise Puhta ja Rakendusliku Biofüüsika Ühenduse president. Tema naine Marianne aitas tal asju ajada. Neil on tütar ja poeg.

1984. aastal leiutas TMR meetodi valkude struktuuri määramiseks lahustes. Seni määrati see kristalliseeritud valkudel. Sellesse suhtusid kristallograafidväga kriitiliselt. Ta lahkus ülikoolist ja tegeles kaks aastat suusatamisega. Kuue aasta pärast tema tööd tunnistati õigeks.

2002 aastal pärjati ta Nobeli preemiaga „TMR spektroskoopia arendamisel makromolekulide kolmemõõtmelise struktuuri määramiseks lahuses”.

Riigi Tehnikakõrgkooli ETH (Eidgenössische Technische Hochschule Zürich) ajalugu on kuulusrikas. Selles on õpetanud või töötanud 21 nobelisti, sealhulgas Konrad Röntgen, Wolfgang Pauli ja Albert Einstein ning TMR edendajad Richard Ernst ja Kurt Wüthrich, siin avastati kõrgtemperatuurne ülijuhtivus.

Allikas: Nobelprize.org 

 

 

 

 

Tuumamagnetresonantsi võidukas lugu

1945. aastal registreerisid mitmed USA teadlased nõrga raadiosagedusliku signaali, mille tekitasid tavalise aine aatomite tuumad. See oli uue aine uurimismeetodi, tuumamagnetresonantsi (TMR) sünd. Kui aatomis leidub magnetiline tuum ja pista see tugevasse alalisse magnetvälja ning samal ajal kiiritada raadiosagedusliku väljaga, saab välja sagedust muutes saavutada resonantsi tuumaga. Kui säherdune aatom on molekulis, sõltub resonants tuuma ümbrusest ja nõnda annab selle resonantsi sagedus infot tuuma lähiümbruse kohta ehk molekuli ehituse kohta.

Viimase 70 aastaga on TMR meetodi avastajatele ja arendajatele jagunud kuus Nobeli preemiat.

Funktsionaalne resonantskuvamine on tuumamagnetresonantsi (TMR) meetod, ainult et patsiente vähem kohutava sõnata „tuum“. Patsient viibib suure ja tugeva magneti õõnsuses. Nii on TMR spektromeetrid jõudnud meditsiini, neid on ka Eesti haiglates, kuid aju uurimiseks, saati veel raviks, meil neid ei kasutada, pigem diagnoosimiseks.

 

Füüsika | News

Nobelisti portree

05.10.2017

Originaalne foto nobelistist

Tekst ja foto: Tiit Kändler, teaduskirjanik

Kip.Thorne2.A

Uusim Nobeli füüsikapreemia jagati ometi kord viimase aja suurima saavutuse autoritele. Neile, kes tõestasid lõpuks,

et gravitatsioonilained on ometi olemas. Neist kolmest on värvikaim Kip Thorne, kes on teinud koostööd ka Stephan Hawkingiga ja juba 1980. aastatel pakkus välja meetodi gravilainete detekteerimiseks. Ta on ka tundud kihlvedaja; Hawkingiga selle peale, kas must auk kiirgab või mitte. Sel puhul jäi ta küll alla.

Gravilainetest kirjutan täpsemalt edasipidi, siin aga on hää meel tuua foto, mille tegin 2009. aasta suvel Londonis toimunud maailma teadusajakirjanike kongressil WCSJ, kus Thorne esines kosmoloogia-teemalisel paneelil.

TK

Füüsika | mis.toimus | News

Tähtis päev Eesti füüsika ajaloos

07.12.2016

Tähtis päev

Saari Põldroosiga

1946 – Eesti NSV Rahvakomissaride Nõukogu määrusega asutati Eesti NSV TA Füüsika, Matemaatika ja Mehaanika Instituut (FMMI), seega tänavu, näiteks täna tähistab TÜ FI 70. aastapäeva!
Minu fotod külastusest 24. novembril:

Akadeemik Peeter Saari näitab Enn Põldroosi maali aastast 1976, millel kujutatud Besseli valguskuul, mis äsja instituudis heleda keskmega kinni püütud;

TÜFI direktor Jaak Kikas külmetab iga päev katusel, et ennustada soodsat rahastamisilma.

¤

Kikas.Katusel

Füüsika | News

Ülikiirelt saab edasi kanda vaid kvantinformatsiooni

08.06.2016

 

See teaduskirjanik Tiit Kändleri essee ilmus Maalehes 2. juunil 2016.

 

Kvantteleportatsioon on võlusõna, millega loodetakse tähistada asjade ja isegi inimese silmapilkset reisimist ruumis. Siiski pole ka veidravõitu kvantmehaanika nõnda võimas, et seda unistust teoks teha.

 

Kui filmistsenarist hätta jääb, võtab ta kasutusele teleportatsiooni. Selle nipi abil on võimalik tegelaskuju ühe hetkega teise paika liigutada. Ja kes meist ei tahaks sedasama võtet kasutada, ainult et siis tekib oht nagu virtuaalses maailmas, et jäädki erinevate paikade vahel plõksuma, süveneda ei jaksa ühessegi.

Inglise keeles on „portable“ on kantav. Tele- on eesliitema kaug-. Sõna „teleportation“ väärikates sõnastikes pole. Aga ilmus ju „television“ kaugnägemise tähistamisena vähem kui saja aasta eest. Sellepärast on korrektsem kõnelda kvantteleportatsioonist, mida on eesti keelel raske välja ütelda. Veel vähem meelel selle üle mõtelda.

Footonite esimene kvantteleportatsioon 1997. aastal.

Teleport.Graf.ML

Anton Zeilingeri juhtimisel toimunud esimese kvantteleportatsiooni eksperimendi skeem.  Teadlased tekitasid kaks põimunud footonit, saates footoni ultraviolettlaserist erilisse kristalli (kuubike keskel), mis tekitas kaks infrapunast footonit, millel kummalgi oli pool algse footoni energiast. Nad saatsid laserikiire läbi kristalli kaks korda, et saada kokku neli footonit.

Üks paar oli põimunud paar (footonid 2 ja 3), mida kasutati teleportatsiooniks, teisest paarist üks (footon 1) aga saadeti läbi polarisaatori (mis mõõtis footoni olekut), et veenduda teleportatsiooni olemasolus. Neljas footon oli vajalik, et anda eksperimentaatoritele teada, millal andmeid koguda.

Footonid 1 ja 2 viidi kokku valgusejaoturis, nii nagu need kokku põimiti. Katset mitu korda korrates oldi kindlad, et footon 3 oli polariseerutud täpselt nurga all, mida ennustas teleportatsiooni teooria.

Allikas: Chad Orzel

Eelmisel teadusküljel kirjutasin alustuseks kvantpõimumisest. Sellest veidrast kaugmõjust, milleks Einstein seda kvantnähtust pidas ja arvas, et tegu on pigem matemaatilise trikiga, kui looduses aset leidva nähtusega. Kvantpõimumine on teleportatsiooiga seotud, ainult et kuna viimasega kantakse edasi ka informatsiooni, ei toimu see hetkeliselt, vaid valguse kiirusega.

Kvantpõimumine on selgelt tõestatud: kui kaks algosakest kiiratakse üheskoos eri suundades, siis mäletavad nad teineteise olekuid, kui kaugele nad teineteisest ka lendaks. Suurim võimalikest kiirustest vaakumis on valguse kiirus, mis on suur, ent lõplik. Sellepärast kvantpõimumisega informatsiooni edasi kanda ei saa.

 

Hetkelise ülekandumise suhtelisus

Kvantteleportatsioonist rääkimine on minu meelest pigem maitseasi. Me võime klassikaliseks näiteks tuua faksimasina. Või miks mitte dokumendi  skännimise, saatmise mailiga ja siis uuesti trükkimise. Saadate oma dokumendi välja ja teine faks või arvuti võtab selle vastu. Kuid pidage silmas, et teile jääb originaal alles! Kui me kõige ägedamate fantastide eeskujul kujutleme inimese kvantteleportatsiooni, siis peame esmalt mõõtma inimese kõigi aatomite seisundid ja need siis põimituna vastavate aatomitega sihteesmärki saatma. Mida aga teha originaaliga? Kas see hävitada? Olete sellega nõus?

Toon siin näite astronoomia ajaloost. Kuigi oli ka teisi mõtlejaid, sai Ptolemaiose 2. Sajandist pärit süsteem Maaga liikumatus keskmes ja selle ümber tiirutavate Päikese ja planeetidega niivõrd mõtlemisele omaseks, et katseandmetega sobitumiseks lisati vaid planeetide orbiitidele epitsükleid, mis liikusid mööda epitsükleid jne, ja isegi nihutati veidi tiirlemise keset Maa raskuskeskmest eemale.

Ja polnud häda midagi, ainult et planeetide üksteise suhtelisi kaugusi oli täpsemalt üha raskem välja arvutada, ja ka taevasfäär, millel tähed arvati paiknevat, muudkui tundus eemalduvat. Nikolai Kopernik, kasutades on positsiooni Varmia piiskopkonnas maksukoguja  ja asehaldurina ning saanud hästi läbi paavstiga, tuli 16. Sajandi alul selle peale, et lihtsam on taevakehade liikumist kirjeldada, kui võtta asja nii, et Päike on keskmes ja planeedid ümber selle tiirlevad, ja sedagi veidi ringjoontest erinevatel elliptilistel orbiitidel. Kuuldus tema teooriast levis, ometi ei söandanud ka ise taevakehi mõõtnud Kopernik oma raamatut avaldada varem kui oma surma-aastal. Gioardano Bruno, filosoof, laiendas päikesesüsteemid kõigile tähtedele, ja põletati elusalt, Galileol, kellele alul Vatikan suisa soovitas Koperniku ideed tutvustada, läks kah haprasti. Paavstkond magas lihtsalt Koperniku töö maha! Ehkki oli ju maitseasi. Mida võtta universumi keskmeks. Võibolla peame kvantpõimumisse ja -teleportatsiooni suhtuma samuti.  Et küll kord koidab aega, mil kõik ajud kahel otsal lausa löövad lõkendama ja neid mõistma saavad?

See on nii, nagu kirjeldas austria kirjanik Stefan Zweig 19. sajandi lõppu ja 20. algust: kui elu oli kindel ja kulges ettenähtud radu. Eriti Viinis. Ja siis tuli kaks sõda ning ühtlasi kvantmehaanika, mis keerasid kõik pahupidi. Inimene pidi hakkama mõistma, et on asju, mida ta ette kujutada ei suudagi. Aga ta ei ole kaotanud lootust: äkki ikkagi suudab?

Umbes samal ajal kirjutas austria kirjanik Robet Musil oma „Omadusteta mehes“: Tõde on see, et teadus on välja arendanud karmi, kaine vaimse jõu mõiste, mis teeb inimsoo vanad metafüüsilised ja moraaliettekujutused lihtsalt talumatuks, ehkki ta suudab nende asemele panna ainult lootuse, et saabub kauge päev, mil vaimsete vallutajate rass laskub alla hingelise viljakuse orgudesse.“ Kuid lisas: „Halbadel aegadel  tehakse kõige koletuslikumad majad ja luuletused täpselt niisama ilusate põhimõtete järgi nagu parimatelgi aegadel.“ Nõnda tundub olevat ka kvantmehaanikaga.

 

Tagasipöördumist pole

Inglise tuntumaid füüsikuid Roger Penrose arutles oma 1989. aastal ilmunud ja kuulsaks saanud raamatus „The Emperor’s New Mind“  („Keisri uus aju“) nõnda: oletagem, et teleportatsiooni masin ehitatakse. Inimene skaneeritakse peast jalgadeni ja muudetakse kokkupaneku instruktsioonike. Saadetakse see info mõnele teisele planeedile ja pannakse seal olevatest aatomitest kokku. Oletagem, et sel olendil tekib teadvus. Mis saab siis, kui Maal elavat originaali ei hävitata? Kumb olend te siis olete? Kas on see füüsikaseaduste kohaselt võimalik? Ta arvab, et tegemist on kvantmehaanika sisulise rolliga mentaalsete nähtuste mõistmisel. Küsimus on kunstliku intelligentsi loomise võimalikkuses.  Pole võimalik kopeerida kvantolekut, jättes originaalse oleku puutumatuks. Ainus võimalus: poolitada aju. Penrose arvab nimelt, et oluline teave inimesest esineb mõlemas ajupoolkeras. Kas oleksite nõus ronima sellisesse teleportatsiooni masinasse?

Ameerika füüsik Chad Orzel, püüdes oma koerale kvantmehaanikat õpetada 2010. aastal ilmunud raamatus „How to Teach Quantum Physics to Your Dog“ („Kuidas õpetada kvantmehaanikat oma koerale“), võtab asja lihtsamalt: kõik siiani õnnestunud kvantteleportatsiooni katsed on tehtud üksikute osakestega, tavaliselt footonitega. Koer aga on tehtud eleportatsioon ei kanna üle asja või olendit, vaid tekitab teise kohta samas kvantolekus aatomi. Nõnda et meil on lõpuks kaks samas olekus aatomit – üks siin, teine seal. Kui meil ka oleks vaja saada aeda täpselt samasugune koer, peaks meil seal ess ootama samasuguse koera täis aatomeid, mis siis reeglite kohaselt kokku pannakse.  Kuna kvantmehaanika on mittelokaalne, siis ei saa me liigutada üksikuid asju, vaid kogu keha kvantolekut. Ning see toimuks valguse kiirusest aeglasemalt.

Kurb küll, aga 1982. aastal näidati, et teadmata kvantolekust ei saa teha täpset koopiat. Kui aga kvantolek ära mõõta, siis häirib see seda olekut.

Meil tuleb vaid võtta teadmiseks, et kvantteleportatsioon on võimalik vaid tänu kvantpõimumisele (millest oli jutt Maalehes nr 20, 19. mail) ning esimest korda pakuti selle käik välja firma IBM laboris 1993. aastal. Katse teostati 1997. Aastal Viini füüsiku Anton Zeilingeri juhtimisel. Täpsemalt palun vaadake graafikult.

Järgnevates katsetes teleporteeriti footonid üle Doonau jõe aastal 2004 (umbes 600 meetrit) ja seejärel õnnestus Kopenhaageni Niels Bohri instituudi teadlastel kasutada teleportatsiooni ühe rühma aatomite oleku saatmiseks teisele rühmale.

Selle loo moraal on, et kvantteleportatsioon on ińformatsiooni edasikandmine, mitte aga hetkeline reisimine, mille teleportatsiooni nime all võttis 1931. aastal kasutusele ameerika kirjanik Charles Fort. Edasikantud info põhjal võib muidugi originaali üles ehitada, ent see tähendab originaali sisulist hävimist ning inimese puhul aju toimimise mõistmist ehk kunstliku intelligentsi ehitamist. Seni uurivad kvantfüüsikud kvantteleportatsiooni, lootes seda kasutada seni veel üsna algeliste kvantarvutite täiustamiseks. Olgugi kvanteleportatsioon veel isegi teadlastele suuresti mõistetamatu, lohutagem end Robert Musili kombel: „Inimkonna ajaloos pole vabatahtlikku tagasipöördumist.“

 

 

Füüsika | lood.teadusest | News

Kvantpõimumine – osakeste lõppematu armastus

08.06.2016

See teaduskirjanik Tiit Kändleri essee ilmus Maalehes 19. mail 2016.

Kvantpõimumine tähendab seda, et kaks footonit, mis on olnud omavahel ühenduses – näiteks kiiratud üheskoos välja mõnest aatomist – jäävad ühendusse ka siis, kui on lennanud universumi erinevatesse otstesse. Kvantpõimumist on näidatud ka aatomite ja nende väiksemate süsteemide puhul.

 

Armastus on meeletus, mis sarnaneb kvantpõimumisega. Kui armastus ka otsa saab, jääb see mõlemale osalisele mällu eluks ajaks, olgugi et üht või teist moodi moonutatud ja varjutatud kujul. Kui kaugele inimesed ka teineteisest ei elaks, ikka on kunagine armastus kuidagiviisi meeles. Kuid kvantpõimumine on midagi absoluutsemat kui armastus – see õhendus jääb kunagi ühenduses olnud osakeste vahele alatiseks. Ärge muretsege, kui see tundub mõistetamatuna: sellest polegi tavamõtlemisel võimalik aru saada, umbes nagu armastusestki. Isegi Einstein ei saanud, ei ühest ega teisest.

Miks ma räägin siin armastusest? Sest on hüpoteese, mis kujutavad meie aju kvantsüsteemina, milles ajurakke neuroneid siduvad võrgustikud pole kirjeldatavad klassikalise, meid ümbritsevat maailma küllaltki hästi kujutava lähenemisega.

 

Tontlik kaugmõju

Albert Einstein nimetas kvantpõimumist „tontlikuks kaugmõjuks“, sest põimumine lubab kahel osakesel olla silmapilkses ühenduses, nõnda et ühele osakesele suunatud tegevus mõjub teisele osakesele, isegi kui need asuvad teineteisest hirmkaugel. Nõnda nagu graafikult on näha, alustavad põimunud osakesed üles ja alla suunatud spinnolekutes. Spinn on kvant- ehk algosakesi iseloomustav kvantsuurus, mida on illustreeritud kui vurri pöörlemist ühes või teises suunas. Footonil ehk valgusosakesel võib olla kaks „pöörlemise“ ehk spinni suuda: üles või alla. Tavalises vabas seisundis on kvantosake liitolekus ehk kahe spinnisuuna superpositsioonis: kui seda mõõta, siis pooltel juhtudel nähakse üles, pooltel alla suunatud spinniga footonit.

Niipea kui footoni spinni suunda mõõta, võtab footon kindla oleku, kas spinni suunaga üles või alla. Sellele reageerib teine osake. Kui esimese osakese spinn on suunatud alla, siis teise osakese spinn on suunatud üles. Nõnda saab ühe osakese olekut mõõtes teada, milline on teise, algselt põimunud osakese seisund, viibigu see osake kuitahes kaugel.

Põimumine.Graf.ML.orig

Ameerika kvantfüüsik New Yorgi Union Colledge’i professor Chad Orzel, kes on avaldanud raamatu „Kuidas õpetada kvantfüüsikat teie koerale“. Chad Orzel on toonud näite, mida kuulsin ta suust Stockholmi Ülikoolis 2014. aasta  augustis toimunud põhjamaade kvantfüüsika keskuses Nordita toimunud seminaril. Tema koer ja tema sõbra koer on sõbrad. Kui kaks koera on koos, siis nad võiksid olla neljas olekus: magab kas üks või teine, samas kui tine koer on ärkvel. Võis siis on nad mõlemad ärkvel ja mängivad või siis magavad koos. Tegelikkuses realiseerub vaid kaks võimalust: koerad kas mõlemad magavad või on mõlemad ärkvel. Nõnda piisa vaid ühe koera nägemisest, kui on teada, kas teine koer magab või on ärkvel.

Samal seminaril tõi Viini Ülikooli kvantteaduste ja -tehnika keskuse Aspelmeyeri rühma teadlane Rainer Kaltenbaeck oma loengus kvantpõimumise kohta mällusööbiva näite. Oletame, et pärast lennureisi rabate pagasilindilt oma kohvri ja tõttate kähku koju. Kodus avate kohvri ja näete, et see ei olegi teie oma: asjad selle sees on hoopis teistsugused. Sellest teate te hoobilt, mis on kellegi teise kaasreisija käes olevas teile kuuluvas kohvris. Info kahe kohvri seisundi kohta on põimunud, kui kaugel need kohvrid ka üksteisest ei asuks.

Milleks kasutada kvantpõimumist

Viini koolkonna värvikamaks juhiks on Viini Ülikooli professor Anton Zeilinger, kelle rühmal muude oluliste katsete seas õnnestus korduvalt mõõta kahe teineteisest 144 kilomeetri kaugusel asuva footoni kvantpõimumine kahe Kanaari saare vahel. „Meil on eksperimendi tulemused, milles keegi ei kahtle,“ kinnitas Zeilinger, kui ma 2007. aastal Viini Ülikoolis tema laboratooriumit külastasin. „Esineb korrelatsioon kahe kuni 144 kilomeetri kaugusel oleva punkti vahel. See tähendab, et otsustus, mida tehakse ühes otsas mõjutab teist otsa silmapilkselt. See on jälgitud tõsiasi. Teine asi on tõlgendamine.“

Praegu igatahes tõlgendatakse kvantosakeste põimumist nõnda: kvantmaailm ei ole lokaalne, nagu on makromaailm, vaid mittelokaalne. See tähendab, et kui meie oleme harjunud maailmaga, kus saame mõõta, kui kaugel on meie ees sõitev auto ja millise kiirusega see sõidab, kuni me seda autot näeme – see tähendab, et saame teha kohalikke ehk lokaalseid mõõtmisi, siis kvantmehaanika mittekohalik ehk „mittelokaalne“ ses mõttes, et väga suure kaugusega eraldatud paikades tehtud mõõtmised võivad üksteist mõjutada.

Muidugi ei meeldinud see idee Einsteinile, kes leiutas oma mõttelise eksperimendiga nn „varjatud muutujad“, mis on meie eest osakesse peitunud, ent teevad kvantmaailma inimesele mõistetavaks. Kuid kõik edukad katsed on tõestanud, et kvantmehaanika ei ole klassikaliselt mõistetav – see on mittelokaalne.

Kuid silmapilkne mõju on ju vastuolus üldrelatiivsusteooriaga ja valguse kiiruse lõplikkusega.

See tundub olevat vastuolus. Kuid tegelikult ei saa te ikkagi saata sõnumit valgusest kiiremini. Te saate vaid mõõta lokaalset süsteemi. Te saate küsida näiteks piljardipallilt, kas ta on siin või seal. Kuid ei saa sellele ette kirjutada kindlat vastust. Seepärast räägitakse kvantmehaanika ja relatiivsusteooria rahumeelsest kooseksisteerimisest.

„Meie tegutseme uudse kvantinformatsiooniteaduse alal, mis viib kokku kvantfüüsika, arvutiteaduse ja infotehnoloogiad,“ selgitab Stokholmi Ülikooli füüsikaosakonna professor Mohamed Bourennane, kes uurib footonite põimumist laborilaual. See teadus kasutab erinevaid kvantprintsiipe nagu kvantpõimumine ja superpositsioon, et lahendada infotöötlemist arvutamisel ja andmesidel. Teisisõnu – kvantarvutite loomisel ja teadete salakodeerimisel ehk kvantkrüptograafias. See on ka põhjus, miks kvantpõimumine on meile oluliselt tähtis, kui oleme juba kord digitaalse maailma poole oma seadmetega pöördunud. Uus teadusharu kvantbioloogia püüab leida, kas kvantpõimumine võib esineda ka suuremates elussüsteemide. Näiteks inimese ajus.

Kusagil valemite sees on peidus piir, mis eraldab meile tuntud suur maailma tillukesest maailmast. Ja see piir ei ole niigi terav nagu näiteks piir Eesti ja Läti vahel. Makromaailmas ei kehti omaenese seadused, see on vaid meie jaoks mugav lähendus maailmast, mis on igas mõõtmes kvantmaailm.

Väga nutikas. Kvantmehaanikat võib interpreteerida võibolla 1001 viisil. Me võime ehitada maailma üles stringi teooriast lähtuvalt, kuid see viis võib osutuda keerulisemaks kui olemasolevad teooriad. Kas siis Ockhami habemenoa printsiip, mis nõuab võimalikult lihtsat seletust, kvantmehaanikas ei kehti?

Tundub, et selle printsiibi rakendamine teaduses on küllalt edukas. Teeme seadused nii lihtsad kui võimalik, mida me peame ka ilusaks. Seletada maailma võimalikult vähese arvu sümbolitega. Kuid keegi ei tea, kas see printsiip kehtib alati. Mina arvan, et peame sellest siiski kinni pidama ja Kopenhaageni tõlgendus on kõige lihtsam. Kuid selgust toob tulevik, mil selgub ühe või teise teooria rakendatavuse võimalikkus. Küllap asendab mõni uus teooria ka kvantmehaanikat.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Füüsika | News | vaata.imet

Karksi ordulinnuse kirik ja üldrelatiivsusteooria

10.09.2015

Karksi ordulinnus.Peetri KirikAKas Karksis on ruum kõverdunud?. Ordulinnuse varemetesse 18. sajandil ehitatud Peetri kirik on lõunakaarde, Pisa torni suunas kaldu. Detsembris saab sada aastat Einsteini üldrelatiivsusteooria avaldamisest.
Foto: Tiina Kaljundi

Füüsika | Kosmoloogia | News | to.imetaja

Aja uus määratlus: universumi põhialus

12.01.2015

6. jaanuaril 2015. aastal võitsid tunnustatud Buchalteri kosmoloogiapreemia Perimeter’i instituudi kosmoloog Lee Smolin ja Edinburghi Ülikooli kosmoloog Marina Cortês. Nende töö, mis kuulutati kosmoloogias läbimurdeliseks, sisaldub ajakirjas Physical Review D avaldatud artiklis pealkirjaga „Universum kui unikaalsete sündmuste protsess.“ Tegemist on järjekordse katsega sulatada aja pöördumatut kulgu füüsika alustesse. Teadlased pakuvad välja energeetilised põhjuslikud struktuurid, saamaks jagu sügavatest probleemidest, millega kosmoloogia esmaprintsiibid vastastikuti seisavad.

Nad alustavad hüpoteesist, et aeg on niihästi fundamentaalne kui pöördumatu. Enamik füüsikuist näeb aega kui omadust, mis tuleneb fundamentaalsematest füüsikaseadustest. Põhjuslikkus tuleneb otseselt sellest pöördumatusest, kinnitavad Smolin ja Cortês, tulevik luuakse pidevalt olevikust läbi aja aktiivsuse. Samamoodi on fundamentaalsed omadused energia ja moment ehk liikumishulk. Aegruum ja selles liikuvad osakesed ilmuvad läbi aja aktiivsuse. Igal sündmusel on oma sõrmejälg – eriline signatuur, mis moodustub eelnenud sündmuste summast ja ei mingitest muudest sündmustest. See viib nii asümmeetrilise universumini kui võimalik. Teadlased arendavad oma teooriat analüütiliselt, illustreerides seda ruumiliselt ühemõõtmelise universumi arvulise simulatsiooniga.

kellpesuTuntud vastuvoolumõtleja Smolini nägemus maailmast on täpselt vastupidine senise üldtunnustatud nägemusega. Kuid see ei lähe vastuollu fundamentaalfüüsika võtmetähendustega. Vastupidi, aja primaarsus ja selle pöördumatus peab ühendatama nüüdisfüüsikaga, et siiani lahendamata võtmeküsimustele ometi kord lahendus leida. Selle abil loodavad Smolin ta tema kaasmõtlejad leida lõpuks ometi üles ja muukida lahti nüüdisaegse teoreetilise füüsika Püha Graali – kvantmehaanika ja gravitatsiooni ühenduse.

See ei ole küll nõnda üheselt saavutatav kui toodud joonistusel, millel on esitatud dušši ja kella ühendus, mis on USA patendiametis olulise leiutisena patenteeritud.

Et hoida kosmoloogia teaduslikuna, peab muutma vana vaate, et universumit valitsevad muutumatud seadused, uue vastu, milles seadused muutuvad. Uues vaates on kolm keskset seadust. Korraga esineb vaid üks universum. Aeg on reaalne: kõik struktuuris ja looduse regulaarsuses muutub varem või hiljem. Matemaatika, millel on ajaga raskusi, pole looduse oraakel ja teaduse prohvet, vaid lihtsalt suure võimsuse ja tohutute piiridega tööriist.

Smolini ja tema mõttekaaslaste ideestikku on siin tore veelkord selgelt korrata. Sellest võib välja kooruda uus kosmoloogia, kuna vana on jooksnud omadega ummikusse. Keegi ei ole veel suutnud leiutada, kuidas on gravitatsioon seotud kvantmaailmaga. Olukord on tõeliselt groteskne: gravitatisooniseadused, mille tuletas teadaolevalt esimesena Isaac Newton 1687. aastal, pole ümber lükatud. Kvantmehaanika seadused, mille võrgustiku leiutamine algas Plancki 1900. aasta katsest selgitada absoluutselt musta keha kiirgust, ja mis juhivad nüüdseks teie arvuteid, läpakaid, telereid ja kogunisti valgusteid, pole ümber lükatud.

Kuni me ei räägi matemaatikast, mille tõepärane seotus loodusega on üks üllatavamaid ja produktiivsemaid, aga ka vaieldavamaid avastusi meie universumis – mida tõestab muu hulgas ka asjaolu, et matemaatikat ei kasuta mitte ainult inimene, vaid ka ronk, sipelgas ja isegi viirus, kelle/mille kohta pole inimene kokku leppinud, on see moodustis üleüldse elus või hoopis elutu.

Niisiis, tore on tutvuda Smolini pakutud nelja printsiibiga, mis pööravad pea peale aja senise käsitluse ja millest teoreetilise füüsika ning kosmoloogia helged pead kahtlustavad peituvat võti, mis avab fundamentaalteadusele seose gravitatsiooni ja kvantmehaanika vahel.

Printsiip A. Aeg on fundamentaalne suurus. Aja toime on kõige elementaarsem protsess füüsikas, mille läbi luuakse olemasolevatest sündmustest uued sündmused. Põhjuslikkus tuleneb otseselt aja pöördumatust olemusest.

Printsiip B. Ajal on fundamentaalse suund. Tulevik areneb oleviku olemisest, puuduvad põhjuslikud silmused või piirkonnad, kus aeg „edeneb tagurpidi“. Fundamentaalsed seadused, mis arendavad tulevikku olevikust, on pöördumatud – minevikku seisuned ei saa konstrueerida oleviku seisunditest.

Printsiip C. Objekti  aeg-ruumi omadused või sündmused tulenevad selle suhetest teiste dünaamiliste objektidega. Kõigil aegruumi omadustel on dünaamiline päritolu.

Printsiip D. Energia on fundamentaalne. Energia ja liikumishulk (moment) ei ilmu välja aegruumist, pigem on tõene vastupidine. Aegruum ilmub välja fundamentaalsemast põhjuslikust ja dünaamilisest olekust, kus energia ja moment on algsed.

kellpesu

See, kas aeg on primaarne või tuleneb fundamentaalsematest loodusseadustest, tundub olevat tavaelu jaoks üsna ebaoluline küsimus. Kuid ka see, et aeg erirelatiivsusteooria tõlgenduses on koolutatud, painutatud, nõnda et see voolab ühes kohas kiiremini, teises aeglasemalt, tundus Einsteini 1916. aastal pakutuna pigem elust irdunud teadlaste meelelahutus.

Füüsika | mis.toimus | News

Nordita Workshop for Science Writers: Restoring the Symmetry. Teaduskirjanike suvekool Stokholmis

03.09.2014

Stokholmis Põhjamaade teoreetilise füüsika keskuses Nordita toimus 27.–29. augustil teaduskirjanikeja teadlaste töötuba kvantmehaanika aktuaalsetel teemadel. Allpool on toodud fotosid sündmusest ja Stokholmist ühes kvantmehaaniliste interpretatsioonidega.

Tekst ja fotod: Tiit Kändler

35 registered and some unregistered participants of the 2014 Science Writers Workshop in Nordita West Seminar Room in Stockholm, Wasastaden, happened sometimes to be very near of the black hole horizon. But nobody lost, and psychiatric help was not needed. Here you can see some of the pictures, made using the quantum Zeno effect.Nordita.1.SkyA with interpretations a la quantum theory.

¤

¤

¤

¤

¤

¤

¤

The Sky on the Earth

Nordita.2.BuildingA

¤

¤

¤

¤

¤

¤

¤

Left side of the Right Symmetry

Nordita.3.MusserA¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤

¤

¤

George Musser: Ask the quantum questsions

Nordita.4.KaltenbaekA¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Rainer Kaltenbaek: My suitcase is entangled

Nordita.6.AstroA¤

¤

¤

¤

¤

¤

¤

¤

Symmetry breaking

Nordita.7.WindowA¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Single slit experiment

Nordita.9.Weinfurtner.GravityA¤

¤

¤

¤

¤

¤

¤

¤

Silke Weinfurtner: Analogue fish and kitchen sink for Gravity

Nordita.10.Building.2A¤

¤

¤

¤

¤

¤

¤

¤

In the shadow of the Black Hole

Nordita.11.Ericsson.QcomputingA¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Marie Ericsson: Quantum computer as a stick

Nordita.12.AlbaNovaA¤

¤

¤

¤

¤

¤

¤

¤

Classical mechanics for your dog

Nordita.12.Laflamme.QinfoA¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Raymond Laflamme: No penalties for interference

Nordita.13.Einstein.CollectedA¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Einstein Collected: words, words, words

Nordita.14.Qubit1A¤

¤

¤

¤

¤

¤

¤

¤

Laflamme’s qubit: orthogonal

Nordita.14.Qubit2A¤

¤

¤

¤

¤

¤

¤

¤

Laflamme’s qubit: circular

Nordita.15.Lab1A¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Mohamed Bourennane: here comes the photon!

Nordita.15.Lab3A¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Mohamed Bourennane: Zero-point experiment

Nordita.15.Lab8A¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Heisenberg relationship

Nordita.15.Lab7A¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Bob is not bigger than a cat

Nordita.17.GrillA¤

¤

¤

¤

¤

¤

¤

¤

The Barbeque principle

Nordita.18Stockholm2A¤

¤

¤

¤

¤

¤

¤

¤

The Stockholm interpretation

Nordita.19.Thorlacius.TabletopA¤

¤

¤

¤

¤

¤

¤

¤

Maxwell’s door

Nordita.21.Auditorium1A¤

¤

¤

¤

¤

¤

¤

¤

Nonlocality and decoherence

Nordita.23.Orzel1A¤

¤

¤

¤

¤

¤

¤

¤

Chad Orzel: Who did not agree with me?

Nordita.23.Orzel2A¤

¤

¤

¤

¤

¤

¤

¤

Chad Orzel: OK, I agree

Nordita.24.ArdonneA¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Eddy Ardonne: I have got two of them. But you?

Nordita.26.KnittingA¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Knitting the quantum web

Nordita.27.SabineA¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Sabine Hossenfelder: Nonvirtual thanks

 

Telli Teadus.ee uudiskiri