Rubriigi ‘Teadusvaldkonnad arhiiv

Matemaatika | News | to.imetaja

Ämbliku maailma võrgus

01.11.2017

 

See Tiit Kändleri essee ilmus oktoobrikuu Eesti Looduses 2017

 

 

Nimetada tippkeskuseks innustunud teadlase rühma, mis püüab meile seletada, et nn arvamusliidrite nõnda armastatud termin „talupojamõistus“ ei toimi ega selgita meile maailma, kuhu inimene oma leiutistega on jõudnud ja milles ta tegutseb, on omamoodi trikk. Kui maailm on mittelineaarne, siis on selle tipp kas noatera või lõpmatusse hüppav funktsioon, mis vajab julmalt renormeerimist. Aga olgu, siiski jääb talupojamõistusest üks osa vajalikuks ka kaootilise maailma inimmõistusele vajalikul määral korrastatud piiril. Mulle seletas talupojamõistuse seoses Ernst Öpiku fenomeniga selgelt ära akadeemik Jaan Einasto. See on, kui ise otsustad, ise teed ja ise ka vastutad.

Jalutaja paradoks  

Kujutage ette, et te ei jaluta mitte nõnda, et iga sammuga astute edasi meetrikese, vaid esimese sammuga meetri, teisega kaks, kolmandaga neli ja nõnda edasi.11. sammuga astute juba 1024 meetrit ning olete edenenud kaks kilomeetrit. Teie kaaslane alustab samast punktist, kuid nurgasekundi murdosakese suunaga põhja poole. Küsimus on, kuidas kahe jalutaja liikumist kirjeldada. Kas see süsteem on stabiilne või hälbib, hajub, nii et trajektoorid lahknevad ja jäävadki lahknema? Eriti kui arvestada, et inimene käib pigem vinka-vonka.

See on mittelineaarne jalutuskäik ja iga korralik mittelineaarsete nähtuste analüütik pakub teile vastuseks jalutuskäiku kirjeldava võrrandi (muidugi mittelineaarse ja ligikaudse) ning selle lahendi, mis üldjuhul on saadud mingis lähenduses. Mida muud on teil teha, kui teda uskuda, sest ise ei suuda te kontrollida, kas näete veel kunagi oma sõpra või mitte. Elu ei ole tavaliselt nii pikk, et kontrollida matemaatikut katseliselt. Parajat irooniat lubades võime määratleda mittelineaarsete nähtuste uurijad kui teadlased, keda me peame võtma hea usu peale.

Siinkohal on sobilik tuua üks ajalooline ja matematiliselt banaalne näide.

1850. aastatel oli üks juhtivaid asjatundjaid arvuteooria alal, eriti lõpmatute ridade alal Göttingenis töötav saksa matemaatik Peter Gustav Lejeune Dirichlet (1805–1859). 1858. aastal usaldas ta oma tudengile Leopold Kroneckerile (1823–1891), et oli leiutanud uue tehnika, lahendamaks mõningaid diferentsiaalvõrrandite perekondi, millel pole analüütilist lahendust. Ta vihjas detailidesse laskumata, et ta oli kasutanud seda tehnikat, et tõestada, et planeetide orbiite kirjeldavad lähendatud, lõpmatute ridadena esitatud lahendused koonduvad. Kahjuks suri Dirichlet 1859. aastal 54-aastasena. Ei Kronecker ega keegi teine suutnud Dirichlet’ vihjet kasutades kõnealuste ridade koonduvust tõestada. Keegi siiski ei kahelnud, et ta kõneles tõtt – nõnda kõrge oli Dirichlet maine.

1880. aastate lõpuks hakkas see lahendamata probleem matemaatikuid painama, ja nõnda korraldas Stockholmi Ülikool kuningas Oscar II läheneva 60. sünnipäeva eel suure auhinnaga võistluse nelja küsimuse lahendamiseks. Üks neist oli küsimus: kas Päikesesüsteem on stabiilne?

William Hamilton (1806–1865) oli tulnud ideele Newtoni füüsikaseadused ümber sõnastada, kasutades osakeste kahte omadust – asukohta ja impulssi. Nõnda sai ta kolme ruumi- ja kolme impulsikoordinaadiga kuuemõõtmelise faasiruumi. Kahe osakese puhul tühjas kastis läheb vaja 12-mõõtmelist faasiruumi. Kuid osa faasiruumist on määravam, osas faasiruumis on osakeste jaotus ühtlane. Faasiruum on nagu maastik. Faasiruum on topoloogia lihtne näide ja Henri Poincaré (1854–1912) kasutas seda, tõestamaks, et Päikesesüsteem on stabiilne. Ta muutis mehaanika ja dünaamika probleemi geomeetria probleemiks. Oma võistlustöös ei käsitlenud Poincaré kogu Päikesesüsteemi, vaid ainult kolme keha probleemi. Tal kulus 200 lehekülge, et teatud lihtsustuste puhul tõestada, et kolme keha süsteem saab olla stabiilne. Kohtunike jaoks oli matemaatiline kaadervärk uudne ja Poincaré sai auhinna, kuna kuninga sünnipäev, 21. jaanuar 1889 lähenes. Kui artikkel ära trükiti, leidsid matemaatikud sellest vea. Kuid Poincaré võttis kätte ja parandas selle, avaldades uue töö 1890. aastal.

Riia.Kuulus Juugend.Alberta

¤

¤

¤

¤

¤

¤

¤

Riia. Valgus ja vari. Kuulus Albrta juugendtänav. Foto: Tiit Kändler

Ainul et, Poincaré enesegi üllatuseks jõudis ta nüüd vastupidisele tulemusele: kolme keha ebastabiilsus on normaalne, pidevalt stabiilsed orbiidid aga erand. Lubatagu nüüd küsida, miks meie Päikesesüsteem püsib? Me võime planeetide orbiidid arvutada mistahes täpsusega ja arvutused näitavad, et Päikesesüsteemi olukorras saavad planeedid säilitada suhteliselt kaua oma orbiite – inimliku ajaskaalaga võrreldes. Päikese elueaga võrreldes pole aga need rangelt perioodilised.

Meil ei jää ka siin üle muud kui uskuda seda juttu, mis on enam või vähem kaootiliselt maha viksitud astrofüüsik John Gribbini 2004. aastal esmailmunud raamatust „Deep Simplicity“, ning vähemalt kord olla õnnelik inimese eluea suhtelise lühiduse üle. (On asjakohane lisada, et kolme keha olukord pole muutunud, mida kinnitas oma loengus 2014. aasta suvel Kopenhaagenis toimunud Euroopa Avatud Teadusfoorumil nüüdiskuulsus matemaatikas, 2010. aastal Fieldsi medali võitnud elegantne prantslane Cédric Villani (vt alumisel fotol)

IMG_8458

Jah, kole oleks näha planeedisüsteemi drastiliselt ümber rivistumas.

 

Keeruka maailma keerutus

Sattunud puhtast huvist Riia linna vastu septembri keskel Riias peetud Euroopa planeediuurijate, asteroidide ja meteooride ning komeetide huviliste teaduskongressile, ootasin sealt valgust probleemile, miks kõik see kupatus koost ei varise. Kuid selgus, et kuigi koos oli 800 teadlast, ei peetud üldistavaid ettekandeid, Kõik tegelesid oma andmete töötlemisega, et kirjeldada Päikesesüsteemi planeetide, eksoplaneetide ja muude vähemate Päikesesüsteemi taevakehade mõne üksiku omaduse täpsustamisega. Jah, andmeid on kogunenud tohutult, katsu sa neid üldistada. Olles uurinud Ernst Õpiku kogutud teoseid mis kenasti köidetuna Tartu Observatooriumis riiulil, olemata astronoom, tundus mulle, et Öpikul oli poilt meie ümber  toimuvast universumist selgem. Ta rõõmustas kunagi 1930. aastatel Tartus, et see linn sobib teadustööks suurepäraselt vaimse keskkonna tõttu, ent mitte arvukate pilviste ööde tõttu – muidu oleks tal läinud vaja palju enam raha, et palka maksta oma enamuses naisarvutajate suurenevale kogule.

Me võime näha, kuidas tahkiste ehitust kompavad lained toovad sealt välja vajalikku salateavet sealhulgas selle kohta, kas raudbetoon, mis nüüdisajal segatakse koos terasvarrastega, on ausalt valmistatud. Me võime tunnetada, kuidas omaette osake soliton, mis on ühelt poolt justkui matemaatikute välja mõteldud, teiselt poolt keskkondades, ka meres, reaalne ja jõuline, võib hävitada või vajalikku  teavet tuua. Me võime visualiseerida Eesti suurimat visualiseerimise süsteemi, me võime kujutleda klaverikeele kõla, mis on nähtavaks tehtud helilainete mõõtmisega. Me võime heita pilgu mere otsatusse lainemaailma, imestada, kust süda saab oma energia, et usinalt tuksuda, uurida peidetud juhtimissüsteemide printsiipe ja avalikkuse õrna tasakaalu. Praktilise meele tasakaalustamiseks saame vaadata mitte ainult läbi klaasi, vaid klaasi sisse. Kes pole veel  pead kaotanud, saab mõtiskleda footonite imeliste trikkide üle.

Labane on öelda, et seda kõike seob mittelineaarsus või koguni  kaootilise maailma imepärane võime luua korrastatud saarekesi. Kui me poeme virtuaalselt looduse selja  taha ja vaatame asja sealt poolt, siis näeme, et mingeid eri  teadusharusid ei ole olemas. On vaid inimene, kes olles hädas looduse toimimise mõistmisega, on pidanud maailma kastistama ja nüüd on jõudnud  järeldusele, et kastikeste vahelised seinad tuleb kui mitte maha tõmmata, siis läbipaistvaks muuta ometi.

Õpikul oli geniaalse matemaatiku pea, mis lõo statistiliselt usutava korra peaaegu kõigis universumi mõõdetavates valdkondades. Arvutite saabudes tema neid kasutama ei hakanud – milleks mul enesel pea? – küsis.  Võib-olla kasutavad astronoomid liigselt arvuteid, võib-olla on arvud muutunud tähtsamaks asja olemusest, mis universumi universaalseid nähtusi piirab ja kaitseb?

Riia linn on saanud nõnda laiad teed ja puiesteed, suured pargid, kui kindlustuste otstarbe kadudes linnamüür maha tõmmati ja bastionide süsteem tasandati. Aja edenedes kogunes rikkus, Rootsi võimu ajal oldi selle suurim linn, Tsaari-Venemaal kolmas sadamalinn. Arhitektuuri arenguvool tõi arhitekte, kes ehitasid hulgaliselt säilinud juugendmaju. Linnaäärsete 19. sajandi villade suurus paneb imestama. Tahad seda kõike mitte ainult nautida, vaid ka mõista. Mulle tundub, et arvutiga pole sel juhul midagi peale hakata. Kas pole ehk astronoomidki end liigselt arvutite taha istutanud, selle asemel, et asjade üle järele mõtelda?

Võib-olla sipleme universaalse universumi ämbliku maailma võrgus, kui kolm keha nagu Kuu, Maa ja Päike meile täpselt teada olematutel põhjustel koos püsivad.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Füüsika | Geneetika | Keemia | News | to.imetaja

Nobeli preemiad 2017: nullist lõpmatuseni

24.10.2017

 

See teaduskirjanik Tiit Kändleri lugu ilmus Maalehes 19. oktoobril osaliselt

 

Tänavused loodusteaduste nobelistid uurivad ainet nullist lõpmatuseni, inimene kaasa arvatud. Meid pidevalt läbivad gravilained, eriline meie valke kolmemõõtmeliselt esitav mikroskoop ja meie ööpäevarütmid on saavutused, mis ei vaja küsimust: aga milleks?

 

 

Füüsika. Universum. Gravilained

016. aasta alul teatati gravitatsioonilainete eksperimentaalsest kinnitamisest kahest mõõteseadmest koosnevas eksperimendis LIGO. Mõõdeti kahe, meist 1,3 miljardi valgusaasta kaugusel asuva hiiglasliku musta augu kokkupaiskumisel tekkinud gravilainet. Olen sellest Maalehes kirjutanud (vt 14. märtsi ML). 2017 ehitati mõõteseade täpsemaks ja tundlikumaks, et skeptikuid tulemuse usaldusväärsuses uskuma panna. Kui gravilainete püüdmine saab astronoomidele tavaliseks, muutub universum meie jaoks oluliselt läbipaistvamaks nii mineviku, Suurest Paugust pärinevate gravilainete suunas, kui tuleviku, mustade aukude tekke ja universumi piiride suunas.

Ajaloo irooniana õnnestus äsjane otsene gravitatsioonilainete registreerimine põhimõtteliselt sama seadmega, millega tehti kindlaks, et valgus levib igas taustsüsteemis ühe ja sama kiirusega. Albert Michelson ja Edward Morley tegid Eiunsteini relatiivsusteooriat kinnitava katse 1887. aastal andekalt lihtsal interferomeetril.

Valgusallikast tulev valgus jagatakse poolläbipaistva peegliga kahte omavahel risti kulgevasse harru ja kummagi haru otsas on peeglid, mis valguse tagasi peegeldavad. Poolläbipaistev peegel viib kaks eri teed kulgenud valguskiirt kokku. Kui mõlema kiire teed on olnud täpselt ühepikkused, siis kohtub valguslaine hari harjaga ja signaal kahekordistub, kui vahe on pool lainepikkust, siis üks laine kustutab teise. Meetod on väga tundlik, ent vajab eriti hoolsat isoleerimist mehaanilistest müraallikatest (vt graafik).

LIGO.ML

LIGO on gravilaineid kinni püüdnud veelgi paar korda ja nende sõsareksperiment, Pisa lähedal asuv itaallaste VIRGO teatas samast 2017. aasta augustis.

¤

¤

¤

¤

Tunnustatud ameerika füüsik Kip S Thorne California Tehnoloogiainstituudist oli 1980. aastatel üks mõõteseadme ehitamise plaanijaid ja algatajaid. Mul õnnestus teda kuulata Londonis 2009. aasta suvel peetud maailma teadusajakirjanike kongressil (vt foto allpool). Rainer Weiss on sakslane, kes töötab Massachussetsi Tehnoloogiainstituudis, Barry C Barish on ameeriklane, kes töötab California Tehnoloogiainstituudis. Miks ei antud Nobeli preemiat neile möödunud aastal, pole selge, nagu ei oska arvata, miks sadade ja sadade gravilainete püüdjate seast valiti just need kolm väärikaimat.

Kip.Thorne2.A

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Kiirkülmutist mikroskoop näeb valke kolmemõõtmelisena

 

Mikroskoobi leiutas 1620. aastatel keegi hollandlane ning see koosnes kahest läätsest. Selle abil uuris kangakaupmaas Antonij van Leeuwenhoeck 1660. aastatel kangaste kvaliteeti. Tänu oma uudishimulikkusele suutis ta avastada bakterid, vereosised, mikroorganismid ja konna vereringe. Saladus oli töötada äärmiselt väikeste läätsedega. Ühel säilinutest on paksus 1,2 millimeetrit ning mõlema külje ümaruse raadius 0,7 millimeetrit. Sellega saavutas ta 270-kordse suurenduse. Nobeli preemia asutamiseni oli jäänud veel 230 aastat. Kuid idee, et mikroskoop avab meile maailma suuruseni null, oli sama originaalne, kui mõte, et umbes samal ajal samuti hollandlaste leiutatud teleskoop avab meile maailma lõpmatuseni. Miks  mikroskoobi lääts valgust murrab, tuli tollal veel välja nuputada. Kuidas murrab, sellest kirjutas Isaac Newton oma 1709. aastal avaldatud ja kuulsaks saanud raamatus Opticks.

Mikroskoobi põhiviga on see, et valgusel on nii suur lainepikkus. See seab piiri, tekitades kõrvaldamatuid moonutusi. Sestap võeti nähtava valguse asemel käiku üha pisema lainepikkusega kiired, kuni leiutati elektronmikroskoop: elektroni lainepikkus on vähimaid, mida teame. Sellega sai hakata nägema aatomeid. Teisalt leiutati, et lühilaineliste röntgenkiirtega saab uurida kristallide atomaarset ja molekulaarset ehitust. Konrad Röntgen oli esimene füüsika nobelist aastal 1901. Elektronmikroskoopia hakkas arenema 1930. aastatel ja sellega seostub nii mõnigi Nobeli preemia.

Aatomjõumikroskoop suudab eristada molekule ja aatomeidki, kuid seda vaid tahke aine, eelistatult kristalli pinnal. Nõnda on elektronmikroskoopia ja aatomjõumikroskoopia pakkunud meile küll toreda sissevaate elutusse nanomaailma alates nanotorudest kuni grafeenini, teiselt poolt aga viiruste maailma, avades hindamatu võimaluse arendada uusi materjale ja võidelda nakkushaigustega.

Kuid see, mida biofüüsik vajab, on uurida suurte molekulide nagu valgud käitumist alul lahuses, seejärel rakkudes. Juba vähemalt 40 aastat on teada, et ühe sellise võimaluse pakub fluorestsents. 1950. aastatel hakati Cambridge’s valgumolekule mõõtma röntgenkiirtega, need enne kristalliseerides. Nõnda avastati ka DNA topeltheeliksiline ehitus.

1970. aastatel arendati välja fluorestsentsi korrelatsioonspektroskoopia. Kui laserkiir fokusseerida, on selles ruumalas eriliselt vähe kiirgavaid molekule ja nõnda saab fluorestseeruva kiirguse footoneid loendades ja nende statistikat rehkendades teada nii nende liikumise kui keemiliste reaktsioonide kohta. Aastaks 2000 valmis esimene fluorestsentsmikroskoop, mille eest võideti Nobeli preemia 2015. aastal.

Ja ennäe – ka 2017. aasta Nobeli preemia, sedapuhku keemiapreemia, omistati uut laadi mikroskoopia leiutamise eest, millega saab näha elusorganismide suuri molekule kolmemõõtmelisena. Šveitslane Jacques Dubocher (Lausanne’i ülikool), sakslane Joachim Frank (Columbia Ülikool, USA) ja šotlane Richard Henderson (Cambridge) töötasid aastaks 2013 välja uue meetodi – täiustatud elektronmikroskoobi, mida nimetatakse krüostaatiliseks, kuna biomolekulid ühel mõõtmise astmel külmutatakse ülikiirelt vedela etaani ja lämmastikuga.

Makromolekulide struktuuri on mõõdetud ennegi, ja nimelt tuumamagnetresonantsi meetodil. Selle meetodi täiustamise eest said Nobeli preemia Kurt Wüthrich ja Richard Ernst ning Eestis viis meetodi maailmatasemele Endel Lippmaa. Ent elumolekulid ja nende kuju muutumine on nii keeruline, et nende taipamiseks tuleb rünnata mitmelt poolt.

 

Öö ja päev meie kehades

Kui und ei tule, on öö pikk. Kuigi objektiivselt selle pikkus ei muutu. Maa pöörleb meist sõltumatult. Elusolendites kulgevat kella, mis on seotud öö ja päeva vaheldumisega, on uuritud juba vähemalt 2400 aastat, mil kreeka laevakapten Androstenes kirjutas tamarindipuu lehtede orienteerumisest läbi ööpäeva. On jõutud teadmiseni, et unetuse üks põhjusi on ööpäevarütmi ehk peenemalt tsirkadiaanrütmi segiminek. Muuseas – inimese ööpäevarütm ei ühti Maa pöörlemise rütmiga, vaid on umbes 24 tundi ja 11 minutit. Isegi nüüdsed nobelistid vist ei tea, miks. See-eest on nad välja uurinud, milline geen kontrollib ööpäevarütmi. Selles abistas neid geneetikute lemmikloom äädikakärbes. Nad isoleerisid geeni, mis kodeerib valku, mis koguneb rakku öösel ja laguneb päeval. Nüüd teame, et ka teised paljuraksed reguleerivad oma ööpäevarütmi sama geeni toel.

Ameeriklased Jeffrey C. Hall (Brandelsi ja Maine’i Ülikoolid), Michael Rosbash (Brandelsi Ülikool) ja Michael W. Young (Rockefelleri Ülikool) lähenesid probleemile igaüks möödunud sajandi lõpukümnenditel veidi erinevalt, ent kokkuvõttes said teada, mida see täheühendiga PER tähistatav valk teeb. 1994. aastal avastas Young teisegi geeni, timeless ehk ajatu, mis kodeerib TIM nimelist valku ja on vajalik ööpäevakella õigeks tööks, tagades tagasiside.

Nii et teame, millised geenid on mängus, kui meie ööpäevakell õigesti ei käi, kuid kuidas neid parandada, on iseasi.

 

 

 

 

 

Füüsika | News | to.imetaja

Teadus on kõigile avatud

24.10.2017

See teaduskirjanik Tiit Kändleri esse ilmus ajakirjas Eesti Loodus septembris 2017

 

 

Iga inimene peab sageli lahendama tema jaoks uusi küsimusi. Lahendused muutuvad olude muutudes. Nõnda tegutseb tavainimene enese teadmata teadlasena.

 

„Ma tean seda.“ Kui sageli olete seda lauset kuuldavale toonud? Sõna „teadma“ esineb nende saja sõna seas, mis on olemas kõigis maailma keeltes. Selle väite leidsin Oxfordi Ülikooli matemaatikaprofessori ja Simonyi nimelise, „üldsuse poolt teaduse mõistmise“ õppetooli pidaja Marcus Du Sautoy sel aastal avaldatud raamatust „What We Cannot Know“ („Mida me teada ei saa“). Võrratu matemaatik ja teaduskirjanik ning -lektor Sautoy jõuab füüsika ajalugu vaadeldes järeldusele, et muidugi jääb teadus alati alla täielikust teadmisest. „Ma kaalutlen, kas poleks parim ütelda, et me ei saa kunagi kindlalt teada, mida me teada ei saa.“

Jalgratta leiutamine

¤

¤

¤

¤

¤

¤

¤

Foto: Tiit Kändler

Projekt ITER valmib Prantsusmaal härgamisi, ent Karlsruhe Tehnikainstituudis keevitati selle reaktorit juba 2009. aastal.

 

Solvavalt triviaalne tulemus 500-leheküljelise raamatu kohta? Arvan, et mitte. Teaduse ajaloost saab tuua hulgi näiteid, et oma aja tunnustatuimad teadlased eitasid võimalust teada saada, mida me praegu peame kooliteadmiseks (universumi vanusest algosakeste maailmani välja).

Lõplik lõpmatus

Praegu kinnitab arvestusväärne hulk kosmolooge, et meie universum on lõplik. Või vähemalt, et me ei saa kunagi teada, kas see on lõpmatu. Küsimus, mille esitab teile kuueaastane laps. Du Sautoy jõuab oma raamatus järeldusele, et me saame kasutada matemaatikat, et lõplike vahendite abil tõestada lõpmatuse eksisteerimist. Või veel – Sautoy ise on paarkümmend aastat muude tegevuste seas pusinud ühe arvuteooria teoreemi tõestamise nimel. Nii nagu see matemaatikute seas loomulik on. Nõnda et võib-olla siiski eksisteerib lõputu hulk paralleeluniversumeid, mida ju ühe matemaatika kohaselt näidatud on, kuid mille kinnituseks me veel katseid teha ei oska. Kuid me ei osanud ju katseliselt ka tõestada, et gravitatsioonilained on olemas, kuni 2016. aasta 11. veebruaril kuulutaati välja LIGO eksperimendi tulemused: 2015. aasta septembris registreeris kaks sõltumatud interferomeetrist detektorit kahe hiiglasliku, Maast 1,3 miljardi valgusaasta kaugusel asuva musta augu ühinemisplahvatusest välja paiskunud gravitatsioonilained.

Gravilainetest loodetakse saada sellist teavet universumi hiiglaslike objektide kohta, mis siiani on olnud varjul. Täpselt 100 aastat hiljem, kui Albert Einstein ennustas gravitatsioonilained ja Karl Schwarzschild mustad augud, mõõdeti kahe musta augu ühinemisest Maale jõudnud lained. Gravitoni pole veel leitud. Vähe sellest, äsja teatas Ameerika Astronoomiaühing, et saadi raha LIGO andurite 25 protsenti tundlikumaks muutmiseks ning tuleval aastal võetakse ette pikem mõõtmine. Nagu nägime, polnud ühest mõõtmisest Nobeli preemia saamiseks piisav.

Homo sai Homo sapiens sapiensiks, kui umbes 70 või 50 tuhande aasta eest leiutas keele, mis võimaldas hakata vestma väljamõeldud lugusid. Müüdid, religioonid,  Chevrolet, Armani, paberraha, sotsialism, liberalism. Nende meemide jõud on usaldusel – kui usaldus variseb, varisevad ka lood.

Kreeka jutuvestja Aisopos pajatas umbes sellise loo. Elas kord tähetark ja kõndis mööda metsa äärt, imetledes taevas säravaid tähti. Kõndis, kuni kukkus auku, mille olid talumehed kaevanud tiigri püüniseks. Välja ta sealt ei suutnud ronida. Hakkas siis appi karjuma. Küla serval elanud talumees tuli kohale ja küsima: „Kes sa sihuke oled?“ „Olen tähetark,“ vastas tähetark. „Kui sina väidad, et oled tähetark ja tead meist lõputult kaugel olevate tähtede saladust, kuid oma silme ette ei näe, siis ongi su koht augus,“ kostis talumees ja läks koju tagasi.

Võib-olla pani Aisopos selle loo pihta hiinlastelt, aga nüüd, mil Euroopa 16.-17. sajandi teadusrevolutsiooni saavutused ja Euroopa muusika on hiinlased pihta pannud, pole sellest lugu. Kui oma õpetajat, akadeemik Endel Lippmaad tema biograafia kirjutamiseks kaks aastat intervjueerisin, küsisin kord, miks ta teadust teeb. Ta vaatas mind oma kelmikas-läbitungival pilgul ja vastas: „Lõbu pärast, nii nagu teiegi kirjutate!“ „Poliitikat tegin vajadusest.“

 

Universumi rahvas

Me elame maailmas, mida nimetame universumiks. See asub nulli ja lõpmatuse vahel. Kõige põnevamad asjad juhtuvad eimiskis ehk vaakumis ja seal, kuhu me näha ei saagi. Kui meie ei saa miskit näha, siis on meil varuks üks imepärane asi – matemaatika. Matemaatikaid on lõputu hulk. Algebra ja geomeetria, rühmateooria ja hulgateooria ja mis veel kõik. Me võime vaielda, kas meie universum on lõplik või lõputu, kuid matemaatikaga oleme tõestanud, et pole vahet, kas vaatame universumit arvtelge nulli ja ühe vahel või nulli ja lõpmatuse vahel.

Sest lõpmatusi on mitut sorti, nii nulli ja ühe kui nulli ja lõpmatuse vahel.

Selleks, et füüsikast lõbu tunda, pole vaja teada kogu füüsika ajalugu. Pole vaja teada mingeid valemeid. Teadusest kirjutamine on nagu teadus ise: tähtis on liikumine, mitte tulemus. Füüsika libiseb meil käest, selle seadused täpsustuvad, kui matemaatika teoreemid on jäävad, kui need on kord tõestatud. Pythagorase teoreem kehtib lamemaal ikka, kuid Newtoni geniaalsed seadused vajavad täpsustamist.

Jeesus ütles evangelistide vahendatuna: „Minu riik pole siitilmast.“ Teisal jälle kinnitas vastupidist. Söandan parafraseerida: matemaatika riik pole siitilmast ja on kah.

Teadusest kirjutamisel on mu meelest ilmtähtis püüda kolme varblast korraga, need on kolm T-d.

Taust. Teravmeelsus. Teadmine. Sama reegel kehtib teaduses.

Taustata teadusuudis on nagu ühe tiivaga varblane. Sööb, ent ei lenda. Teravmeelsuseta teaduslugu on nagu sabata varblane: sööb ja lendab, aga kukub ninali. Teadmiseta, teadmist andmata on teaduslugu, nagu ka teadus pime varblane: sööb ja lendab, aga ei tea, kuhu.

Hea teadus on teravmeelne, selle tuuma tabamine on nagu hea komöödia, tegijale sageli tragikomöödia.

ITER3A

¤

¤

¤

¤

¤

¤

¤

Karlsruhe Tehnikainstituut: inimese parim leiutis jalgratas sobib toetuma kõrgtehnoloogilisele hiiglasele.

Foto: Tiit Kändler

Teadusest kirjutades ei tohi unustada, mis on kultuur. Meie rahvuskaaslase, Rootsis töötava, kultuurimajandust uurinud ja rahvusvaheliselt tunnustatud teadlase Tõnu Puu määratluses: kunstid ja teadus. Kunstides kehtivad samad reeglid, mis teaduses.

Parim viis kadunud asja leidmiseks ei ole seda meeleheitlikult otsida, vaid lasta sellel olla. Küll see varem või hiljem välja tuleb. Kes on tegelnud kunstide ja teadusega, teab, millest kõnelen. Sellepärast pole olemas teadusuudist ajakirjanduslikus mõttes. Mees kukub redelilt hopsti!, uudis! Newton ja Einstein jõudsid selleni, miks kukub ja kuidas kukub, läbi aastakümneid kestnud töö.

On küsimusi, millele polegi vastust. Kuid neist saab osavalt, matemaatika abil mööda hiilida.

See on teadusest kirjutamise rõõm, aga ka õnnetus. Kiuidas sa müüd teoreetiku tagumikutunde? Sest teoreetiku, matemaatiku jaoks pole tähtis niivõrd pea (ilma milleta muidugi ei saa), kui vastupidav tagumik.

Teadusest kirjutamisel ja pajatamisel on neli müüdavat teemat, neli T-d needki. Tervis. Toit Tänane ilm. Tore seks.

Scientific American kinnitab mu juttu. 2015. aastal avaldatud maailma 25 auväärsema teadusinstitutsiooni artiklitest olid loetavaima 25 seas ka:

Uus, bakterite resistentsuse vastane antibiootikum (tervis). Globaalne soojenemine (ilmastik). Apokalüptiline liikide väljasuremine (toitu jääb vähemaks). Seksistlikud arvutimängud.

Lohutust pakub mulle üks artikkel 25-st, milles tõestati, et maamunal kasvab 3,04 triljonit puud. See annab lootust: inimese uudishimu pole kadunud ehk minu moto: „Igaüks on teadlane!“ kehtib.

Lõpetan, kust alustasin, jutuvestja Aisopose looga. Lõvikütt luusis, püss käes, mööda metsa ja uuris muudkui oma jalge ette. Talle tuli vastu puuraidur, kirves käes, ja küsima: „Mida sa maast otsid?“ „Otsin lõvi jälgi,“ vastas puuraidur.“ „Mis sa neis jälgedest otsid, ma parem näitan sulle, kus on lõvi,“ pakkus puuraidur. „Oh ei,“ kohkus kütt, „ma ei otsi lõvi, vaid lõvi jälgi.

Lootkem, et teadus ja sellest kirjutajad ei vaata vaid nina püsti taevasse ja julgevad otsida ka lõvi ennast. Kui vaid inimese ajumahust piisab.

 

 

 

 

Füüsika | Keemia | News

Nobelist Kurt Wüthrich sai Eesti teadusest aimu, kohanud Endel Lippmaad

06.10.2017

See teaduskirjanik Tiit Kändleri intervjuu ilmus ajalehes Postimees 16. septembril 2017

 

Kuigi tähistame 15. septembril oma erakordse akadeemiku ja poliitiku Endel Lippmaa 87. sünniaastapäeva, mitte sünnipäeva, pole tema elutöö meist lahkunud. Eesti Teaduste Akadeemia alustas 12. septembril tema mälestusloengutega, esimene Endel Lippmaa nimeline medal anti nobelistile, šveitsi keemikule ja biofüüsikule Kurt Wüthrichile. Kohal viibis ja pidas kõne ka Eesti Vabariigi President Kersti Kaljulaid.

 

Kõigekülgne teadlane Endel Lippmaa tõestas oma eluga, et „tippteadust saab teha igasugustes oludes“. Nõnda sõnastas esimese akadeemik Endel Lippmaa nimelise medali kätteandmistseremoonial kõnelnud akadeemik ja Helsinki Ülikooli biotehnoloogia instituudi professor Mart Saarma. Endel Lippmaa nimelise medali, metallist E-tähe, riputas laureaadile kaela TA president Tarmo Soomere. Kurt Wüthrichile kohtus Lippmaaga esimest korda 1970. aastate alul ning nautis meie akadeemiku vahedat mõistust ja erilist eruditsiooni. Seejärel esinenud Eesti Vabariigi President Kersti Kaljulaid sõnas: „Lippmaa oli liikuja vaenlase koridoris“. Tõepoolest, meie Lippmaa oli  tuumamagnetresonantsi (TMR) esimesi edendajaid maailmas ning teisalt Eesti iseseisvuse võtme lahtimuukija ja MRP originaalprotokollide hankija.

Lippmaa.TsitaatA

Lippmaa keskendus erinevalt enamikust TMR teadlastest, kes kasutasid molekulide kompamiseks nende koostises oleva vesiniku tuuma, raskematele aatomitele. Tema ja ta kaasteadlased mõõtsid süsiniku ja hapniku, räni ja alumiiniumi tuumade asendit. Eesmärk oli mõista, milline on erinevate suurte molekulide ruumiline struktuur.

Eestile pöördelistel aastatel loobus Lippmaa suurest osast teadusest ja keskendus poliitikale.  Nagu ta mulle tema biograafia kirjutamise käigus 2010. aastal kirjeldas, kasutas ta teaduslikke meetodeid, et riigi vabadus taastada. Sellele juhtis elegantselt tähelepanu Karsti Kaljulaid: „Lippmaa eesmärk oli, kuidas teada saada, mida teada saada.“

Nõnda ilmus Lippmaa võlujõul tollase N Liidu juhtkonna ette kui Issanda nuhtlus MRP protokolli salajase lisa originaalne kehastus. Osava manipuleerimisega saavutasid Lippmaa ja teised Eesti esindajad NL Ülemnõukogu istungil 1989. aastal otsuse, mis mõistis kehtetuks MRP lepingu ja tunnistas sellega, et Eesti väärib vabadust. Seejärel saavutas Lippmaa sellele otsusele ka NL Riiginõukogu kinnituse. „See oli Riiginõukogu esimene ja viimane otsus,“ kinnitas Lippmaa, misjärel naasis täie jõuga teadusmaailma.

President Kaljulaidi sõnul on aeg tavaliselt lühike, et saada tagasisidet teadlastelt, kui mingi otsus on tehtud. „Kui saame uskuda teadlast ja tema meetodit, siis meie ühiskond, digiühiskond toimib,“ ütles ta ilmse vihjega Lippmaa taoliste teadlaste üliolulisele.

Eesti Teaduste Akadeemia peamaja saal Tallinnas Toompeal oli Lippmaa mälestusloenguks tulvil akadeemikuid, Lippmaa pereliikmeid, tema kunagisi kolleege, õpilasi – Lippmaa mõistuse ja lumma austajaid.

 

Intervjuu Kurt Wüthrichiga

Wüthrish.ETL.medalA

Kurt Wüthrich on vähemat kasvu, ent vilgas, samas kõneviisilt pigem rahulik kui tormav. Tüüpilise Šveitsi sakslasena on ta jutt justkui ettevaatlik, ent pigem see ei tõtta, ometi olles täpne ja kohati värvikas. Intervjueerin teda TA peamaja ühes 2. korruse toas, vahetult peale tema loengut ja AK intervjuud. Istume tugitoolidesse ja ma räägin oma taustast, sellestki, et töötasin Lippmaa sektoris, kui ta paar korda meid külastas, ometi ei tegelnud TMR meetodiga. Ta kuulab huviga. Kaelas on tal Endel Lippmaa nimeline medal: suur metalne E-täht. Alustan.

Te olete sündinud maal, talumehe pojana. Te ei otsustanud just liiga noorelt, et teadlaseks hakata. Millal te tundsite, et teadlaseks olemine on teie põhieesmärk?

Ma olin lummatud loodusest, tahtsin saada metsainseneriks. Ma õppisin spordiga seotud alasid ega plaaninud saada teadlaseks. Näiteks unistasin saada profijalgpalluriks, spordiõpetajaks kas keskkoolis või ülikoolis. Kuid meie koolis moodustus õpilaste rühm, mis hakkas ülikoolitasemel õppima matemaatikat ja füüsikat. Siis hakkasin tegema mõningaid katseid, kuid ma polnud nii edukas, et otsustada teadustöö kasuks.

 

Te olete minu kohatud teadlastest erand – et keegi on saanud teadlaseks spordi kaudu. Professor Lippmaa oli spordi suhtes üsna ükskõikne.

Tõepoolest on sport mulle palju andnud. Ma mängin jalgpalli tänaseni, hoolimata mõne aasta tagusest jalavigastusest.

 

Te tõite oma loengus ka näite – kui mõneteist aasta eest oli magnetresonantsi kujutis teie põlvest üsna udune, kuid ometi näitas spordivigastust, siis möödunudaastane pilt on terav ja näitab, et vigastus on paranenud.

Jah, TMR on edenenud – kujutage ette, et seda meetodit saab kasutada molekulist inimeseni ehk läbi üheksa suurusjärgu! Teist sellist annab otsida.

 

Te olete olnud ka spordiinstruktor. Kas tegu oli mäesuusatamisega?

Jah, nii see oli nooruses. Hiljem, 1984. aastal olin pettunud, et mu ideid peeti vääraks ja otsustasin, et hakkan taas vaid spordiga tegelema. Olime seostanud TMR signaali õigete vesiniku tuumadega makromolekulis, ja seeläbi leidnud võtme valgu struktuuri ruumiliseks pildistamiseks.

 

Praeguseni olete te Uus-Meremaa väärika Mercury Bay Game Fishing Club kalastusklubi liige, nii nagu oli näiteks oli Hemingway. Kas olete ka Šveitsis kalu püüdnud?

Poisina küll. Olen püüdnud maailma eri paigust, ka meredest üsna suuri kalu. See klubi on oluline paik, et kohata teraseid inimesi üle maailma.

 

Olete olnud huvitatud prantsuse kultuurist – kirjandusest, muusikast. Millist laadi kirjandusest näiteks?

Ma käisin koolis paikkonnas, mis asus saksa ja prantsuse keelt kõnelevate kogukondade piirimail. Mulle meeldis kõik prantsuspärane, klassikaline kirjandus eelkõige, aga ka veinid ja köök.

 

Teie töö tulemustes valkude struktuuri uurimise alal kaheldi 1984. aastal üsna sügavalt. Milles oli asi?

Nagu ma oma loengus rääkisin, olid kahtlejad kristallograafid, kes mõõtsid samu molekule tahkes maatriksis. Ja see oli enam kui kahtlus, mu tulemusi peeti suisa valeks ja nõnda lahkusin ülikoolist. Valkude sekundaarset struktuuri, mida meie nägime, nägid ka kristallograafid. (Intervjueerija selgitus: primaarseks struktuuriks on üksikute aatomite järjestus valgus, kui see niidina sirge oleks; sekundaarne struktuur on eluliselt oluline ja näitab, kuidas valk ennast lahuses tegelikult kokku voldib. Kritallograafid mõõdavad kristallide ehitust.) Ja kristallograafide saadud struktuur oli täiesti erinev. Meie oma oli täpne, nende oma vale. Toimetaja otsustas meie struktuuri avaldada. Ja läks seitse aastat, enne kui nad tunnistasid, et nad eksisid. Nii et see oli lihtsalt business.

 

Kuidas te hoolimatust suhtumisest jagu saite ja ei murdunud?

Ma lahkusin ülikoolist ja talviti tegelesin suusatamisega. Ning suviti jooksin ma mägedes. Ma ei läinud kahe aasta jooksul ühelegi teaduskogunemisele, vaid panin samm-sammult kirja, mida me olime teinud. Kuni selgus, et oleme kõik teinud õiges suunas, nautisin suusatamist. Kui asi ei õnnestu, pead jätkama, selleks aga pead võitma iseennast.

Minu eesmärgiks oli rakendada TMR strukturaalses bioloogias. 30 aasta eest saime näha vee molekuli, praegu on nähtud 150 000 bioloogilist struktuuri, ent me ei tea ikka, kuidas valk töötab. Tuleb mõista selle kokkukeerdumise teed ja funktsiooni.

 

Kas jätkete praegu loengupidamist Zürichi ETH-s?

Jah, ja mul on seal töörühm, nii nagu Californias ja Hiinas. Seal Hiinas on viisiks, et ehitatakse valmis tohutu maja, varustatakse see tipptehnoloogiaga. Ja siis jäädakse ootama, et äkki keegi värvatuist avaldab midagi ajakirjas Nature. Püüan juhtida tähelepanu, et päris nii need asjad teaduses ei käi.

 

ETH-ga on olnud seotud ka Nobeli laureaat Richard Ernst, keda mul on õnnestunud Tallinnas intervjueerida.

Jah, me oleme koos töötanud. Ta oli siin ka 1973. aastal, kui mina esmakordselt Eestis olin. Teist korda olin Eestis 1977. aastal.

 

Kui te esmakordselt Endel Lippmaad kohtasite, mis teid temas köitis?

Meil oli ühine huvi TMR vastu. Ta oli äärmiselt vahe, ääriselt täpne oma ideede sõnastamises. Tema kaudu sain teada, et Eestis tehakse tippteadust. Endel Lippmaa laboratoorium oli 1970. aastatel üks universumi singulaarsusi. Sedasama arvas ka Richard Ernst.

 

Daily Telegraph nimetas Zürichit parimaks linnaks maailmas, kus elada. Mida teie Zürichist arvate?

Mina elan Bernis ja Bern on Zürichist palju meeldivam linn. Zürichis on suurepärane lennujaam, see on minu jaoks tähtis. Seal on kõrge klassiga muusikateater, ooper – kuhu ma küll ei lähe, sest palju on tööd teha. Seal on head restoranid, kuid see kõik on väga kallis. Ma ei tea, kuidas nad oma järjestuse said, kuid minu jaoks on elamine Californias La Jollas parim paik.

 

Kes vähegi on roninud magnetresonantsi kuvamise aparaati, śee teab, kui suur see on ühes kõigi oma vilede ja piiksudega. Kas kunagi tuleb aeg, et TMR aparatuur muutub väikeseks, nagu on muutunud arvutustehnika seadmed?

Muu tehnika muidugi muutub, kuid probleem on selles, et te peate olema tugevas magnetväljas. Kuid pigem peab funktsionaalne magnetresonantskuvamine jõudma igasse haiglasse.

 

Kas teie pika karjääri jooksul on olnud midagi, mis on teid tõeliselt üllatanud? Lippmaa oli mees, kes ei üllatunud kunagi.

(On üllatunud ja mõtleb pikalt. Muigab.) Esimene kord oli, kui ma nägin omaenese hemoglobiini molekuli, see oli siis absoluutselt uus võimalus. Kui te teete midagi tõelisest entusiasmist, siis on vaimseid üllatusi palju. Kordan veelkord – selle meetodiga saab mõõta nii inimese kui raku, nii bakteri kui valgu molekuli struktuuri. Seega on iga saavutus üllatav.

 

Te uurite valkude elu. Aastal 2000 vallandus suur eufooria, kui teatati inimese genoomi järjestamisest. Loodeti, et nüüd saame teada haiguste kõik põhjused. Ometi pole nii läinud. Mis on organismile tähtsam – kas genoom või proteoom, valkude hulk. Endel Lippmaa rõhutas Geenivaramu rajamisel, et koguda tuleks materjali mitte ainult genoomi, vaid ka proteoomi uurimise tarbeks.

Jah, nii see on, kuid alles nüüd hakkame mõistma, kuidas valk end kolmemõõtmeliseks kokku pakib. Peame oskama ka geenijärjestuse pealt valgu kokkuvoltinist ennustada.

 

Kahtlemata peab selles kehas olema vedruvaim, nõnda kiirelt suisa hüppab Wüthrich püsti madalast tugitoolist, kui intervjuu lõpeb ja ta soovib ajakava korraldajalt, et teda enne hotelli viimist sõidutataks läbi vanalinna. Soovin talle järgmise aasta 4. oktoobriks rõõmsat 80. juubelit ja luban samal päeval, mis on ka minu sünnipäev, teda meeles pidada.

 

Need on kastikesed, võib illustreerida portreekestega, saadan igaks juhuks ka ETH foto

 

Endel Lippmaa süvenes teadusesse lapsena

 

Endel Lippmaa sündis 15. septembril 1930, nõnda oleks 30. juulil 2015 surnud Lippmaa saanud eile 87-aastaseks. Tema isa, akadeemik Teodor Lippmaa heakskiidul hakkas poiss Tartu Ülikooli botaanikaaias elades tegema keemia- ja füüsikakatseid. Isa ei pannud pahaks paugutamistki. Seejärel tuli raadiovaimustus, ta teenis aparaatide parandamisega väikest raha oma raadiodetailide ostmiseks.

Ise pidas ta äärmiselt kasulikuks, et sai gümnaasiumis korraliku ladina keele oskuse, mis kulus Eesti iseseisvuse järjepidevuse tõestamisel ära. Endel Lippmaa perekond hukkus 27. jaanuaril 1943 vene lennukipommi läbi, kui tema kinos oli. Lippmaa kolis Tallinn-Nõmmele tädi juurde ja astus Nõmme gümnaasiumisse.

TPI-sse astus ta põlevkivikeemikuks, kuna orvuna oli tal vaja raha ja seal oli suurem stipendium. Lippmaa abikaasa Helle Lippmaa on keemik, neil on kaks füüsikuharidusega poega Jaak Lippmaa Ja Mikk Lippmaa.

„Iga uus asi, kui seda järjekindlalt teha ja kui see on õige, on destruktiivne,” kinnitas ETL, nagu teda kolleegid kutsusid. Lippmaa ei olnud üheülbaline, et saaksime teda seostada vaid ühe tegevusvaldkonnaga. Nüüdse sõnapruugi kohaselt oli Lippmaa tuumamagnetresonantsi maaletooja, tema juhendamisel ehitati Eesti esimene spektromeeter. Esimesena hakkas ta kasutama ülijuhtivad magneteid, et mõõta vesinikutuumast raskemate aatomite tuumasid.

Aastal 2012 oli Lippmaa artikleid viimase 20 aasta jooksul tsiteeritud 6731 korda ja sel aastal 330 korda.

Uuendused tuumamagnetresonantsis, mille eest Šveitsi füüsik Richard Ernst 1991. aastal Nobeli preemia sai  „panuse eest kõrge lahutusvõimega TMR spektroskoopia metodoloogia arendamisel” leiutasid Lippmaa ja tema kolleegid pisut varemgi. Kuid Eesti teadlastel  ei olnud võimalik oma tulemusi kiiresti avaldada, mujal kui AMPERÉ-i ühingu Ungari konverentsi materjalides –, natuke varem, kui Ernsti avaldatud töö, milles ta kahemõõtmelist tuumaresonantsi kirjeldas.

Ise jagas Lippmaa oma teadustöö järgnevalt: analüütilise aparatuuri ehitamine, tuumamagnetresonantsi spektroskoopia, bioloogia uus paradigma (mida ta eriti rõhutas), neutriino massi massiivsus, keskkonnakaitse: õhk. fosforiit, diktüoneema, energeetika.

Lippmaa juhtimisel saavutati maailma kõige kiirem TMR mõõteraku pööritaja, mille abil aineid endisest palju täpsemalt mõõta sai.

Fosforiidisõja lahingud, MRP avalikustamine, kogu senise poliitilise ja majandusliku süsteemi krahh saabusid 1987. –1989. aastatel, samal ajal avaldas Lippmaa ja tema uurimisrühmmaailma olulistes teadusajakirjades artikleid ülijuhtivuse kohta, järeldades, et tegu ei ole metalse juhtivusega. Kuid meie teadlaste esimesi sel teemal avaldatud artikleid ei uskunud keegi.

„Poliitika oli teadustöö rakendus teisel alal, ei mingit vahet,” ütles ta ise. 1989. aasta jõululaupäev oli Moskva Kremlis Eesti jaoks ärev. Pidi selguma, kas oma istungit pidav NSV Liidu rahvasaadikute kongress, kõrgeim võim Nõukogude Liidus, tühistab Molotovi-Ribbentropi pakti salaprotokollid ja hindab nende osa Balti riikide okupeerimisel või mitte. Hääletati „jah“.

Teist korda pärast MRP võitlust kogunes Eesti tipp-poliitikuid Moskvasse enne Riiginõukogu istungit 6. septembril 1991. Oli vaja teha lobitööd, et Riiginõukogu Eesti iseseisvust tunnustaks. Lippmaa oli kohal. Tunnustus saabus. „Sellega oli mu missioon lõppenud,“ tunnistas Lippmaa.

Siiski osales ta veel ministri ja Riigikogu liikmena riigi juhtimises. Teadlasena lõi ta Eestile kindlad sidemeid Euroopa Tuumauuringute keskuse CERN-iga ja osales projektis TOTEM, olles paljude ühisartiklite autorite seas.

Tänu Lippmaale saime nii varakult Interneti ja domeeni .ee, selle asemel et saada .ru. Tema oli esimene, kes hakkas rakendama personaalarvuteid, tema kaastöölised ehitasid nii sihtotstarbelisi arvutid kui ka esimese personaalarvuti.

Allikas: Tiit Kändler, Endel Lippmaa, Mees parima ninaga, 2012

 

 

 

Nobelist Kurt Wüthrich sai teadlaseks spordi kaudu

Sündis 4. oktoobril 1938 Aabergis Šveitsis, elas Berni lähedal farmeri perekonnas. Lähedane kontakt loodusega tekitas huvi loodusteaduse vastu. Bioloogiliste makromolekulide TMR spektroskoopiaga tegeleb alates 1967. aastast. Õppis Berni ülikoolis, doktorikraadi tegi 1964 Baseli ülikoolis, kus õppis ka võistlusspordiga seotut. 1957 – 1962 oli suusainstruktor mäekuurortides. Töötas Ameerikas, 1969 siirdus Zürichi ETH-sse. Seejärel ringles maailma eri teaduskeskustes. Oli Rahvusvahelise Puhta ja Rakendusliku Biofüüsika Ühenduse president. Tema naine Marianne aitas tal asju ajada. Neil on tütar ja poeg.

1984. aastal leiutas TMR meetodi valkude struktuuri määramiseks lahustes. Seni määrati see kristalliseeritud valkudel. Sellesse suhtusid kristallograafidväga kriitiliselt. Ta lahkus ülikoolist ja tegeles kaks aastat suusatamisega. Kuue aasta pärast tema tööd tunnistati õigeks.

2002 aastal pärjati ta Nobeli preemiaga „TMR spektroskoopia arendamisel makromolekulide kolmemõõtmelise struktuuri määramiseks lahuses”.

Riigi Tehnikakõrgkooli ETH (Eidgenössische Technische Hochschule Zürich) ajalugu on kuulusrikas. Selles on õpetanud või töötanud 21 nobelisti, sealhulgas Konrad Röntgen, Wolfgang Pauli ja Albert Einstein ning TMR edendajad Richard Ernst ja Kurt Wüthrich, siin avastati kõrgtemperatuurne ülijuhtivus.

Allikas: Nobelprize.org 

 

 

 

 

Tuumamagnetresonantsi võidukas lugu

1945. aastal registreerisid mitmed USA teadlased nõrga raadiosagedusliku signaali, mille tekitasid tavalise aine aatomite tuumad. See oli uue aine uurimismeetodi, tuumamagnetresonantsi (TMR) sünd. Kui aatomis leidub magnetiline tuum ja pista see tugevasse alalisse magnetvälja ning samal ajal kiiritada raadiosagedusliku väljaga, saab välja sagedust muutes saavutada resonantsi tuumaga. Kui säherdune aatom on molekulis, sõltub resonants tuuma ümbrusest ja nõnda annab selle resonantsi sagedus infot tuuma lähiümbruse kohta ehk molekuli ehituse kohta.

Viimase 70 aastaga on TMR meetodi avastajatele ja arendajatele jagunud kuus Nobeli preemiat.

Funktsionaalne resonantskuvamine on tuumamagnetresonantsi (TMR) meetod, ainult et patsiente vähem kohutava sõnata „tuum“. Patsient viibib suure ja tugeva magneti õõnsuses. Nii on TMR spektromeetrid jõudnud meditsiini, neid on ka Eesti haiglates, kuid aju uurimiseks, saati veel raviks, meil neid ei kasutada, pigem diagnoosimiseks.

 

Füüsika | News

Nobelisti portree

05.10.2017

Originaalne foto nobelistist

Tekst ja foto: Tiit Kändler, teaduskirjanik

Kip.Thorne2.A

Uusim Nobeli füüsikapreemia jagati ometi kord viimase aja suurima saavutuse autoritele. Neile, kes tõestasid lõpuks,

et gravitatsioonilained on ometi olemas. Neist kolmest on värvikaim Kip Thorne, kes on teinud koostööd ka Stephan Hawkingiga ja juba 1980. aastatel pakkus välja meetodi gravilainete detekteerimiseks. Ta on ka tundud kihlvedaja; Hawkingiga selle peale, kas must auk kiirgab või mitte. Sel puhul jäi ta küll alla.

Gravilainetest kirjutan täpsemalt edasipidi, siin aga on hää meel tuua foto, mille tegin 2009. aasta suvel Londonis toimunud maailma teadusajakirjanike kongressil WCSJ, kus Thorne esines kosmoloogia-teemalisel paneelil.

TK

Ajalugu | News | to.imetaja

Täna 26 aastat tagasi: augustikahurid

19.08.2017

 

Selle loo panin üles 4 aasta eest. Kuid tasub kordamist tänagi.

„Kriisid on niisugused pöördepunktid, mis panevad proovile meie jõu ja võimalused. Kui te ei suuda meenutada viimast kriisi teie elus /…/ siis olete õnneseen – või juba ammu elust väsinud.” Nõnda kirjutab malegeenius ja aus inimene Garri Kasparov oma raamatus „Garri Kasparov. Male kui elu mudel”, mis kahe aasta eest ka eesti keeles ilmunud.

See mõttekäik tabab mu meelest täpselt eesti viimase 26 aasta elu pihta.

Kui me vahel ka küsime, et kas sellist Eestit me tahtsimegi, siis küsin vastu, et millist siis tahtsime? Me ju ei tea tegelikult, milline oli elu kahe sõja vahelises elus. Vähesed on nuusutanud selle lõhnu, kuulnud hääli. Needki on teinud seda lapsepõlves.

Jah, eks vahel teeb ikka viha küll, kui mõni tipptegelane sulel näkku juhtub valetama. Kuid teisalt – kus siis sihukest asja ei juhtuks. Peaasi, et kogu elu ei ole ju rajatud valele, nii nagu oli see veel kahe aastakümne eest.

Mäletan, et NSVL tippjuhid, keda siinkohal meenutadagi ei taha, armastasid kõnetoolidest läbi aastakümnete korrutada: „Me elame suurepärasel ajal, me elame põneval ajal!” Ja ennäe – nende ettekuulutus ongi täide läinud. Küll hoopis teises maailmas, kuid siiski.

20. august 1991 oli teisipäev. Üleminekuperioodi teisipäev. Kas mäletame üldse, et poliitikud olid nimetanud selle aja üleminekuperioodiks?

Tankmees

Ei mäleta täpselt, milline oli ilm, aga umbes selline nagu nüüd või veidike kehvem. Mälu on kummaline asi. Mällu saab sündmused salvestada, ent neid sealt ammutada pole võimalik just mitte alati. Selles mõttes on mälu nagu pank. Vahel saad sealt oma raha kätte, vahel mitte.

Moskva sündmused ja riigipööre ei olnud miski naljamäng, nii nagu seda püütakse vahel kujutada. Saan ammutada välismälust, oma arhiivist. Kirjutasin neil päevil kaks lugu, üks ilmus Maalehes 22. augustil, teine samas 29. augustil. Olin olnud Maalehe poliitikaosakonna juhataja, istunud ja jälginud ja kirjutanud ülemnõukogu sehkendustest läbi aastate. Ja sealt just läinud tööle Rahva Hääle lisalehte Vaatleja toimetajaks, sestap siis Maaleht.

21. august 1991 oli kolmapäev. Siis kirjutasin nõnda.

„Kui ma seda teksti kirjutan kolmapäeval, 21. augusti hommikul, siis tundub, et seegi töö on paljus kaheldava väärtusega – nii nagu meie, nõukogude inimeste kõik muud tööd ja tegemised. Sest pole ju teada, milline on olukord siis, kui leht tellija kätte jõuab.”

Kirjeldasin seejärel, kuidas ülemnõukogu saalist venelased välja marssisid, enne kui iseseisvus välja kuulutati. Ning et püüd läbi aastate nendega sõprust luua viis vaid oluliste seaduste edasilükkamiseni, ei muule.

Kirjeldasin, kuis „Leiburi” leivaputka taha Mustamäel kogunes rammus kolmetunnine järjekord. „Inimene võis hakata leiba tahtma üleminekuperioodil ning sammuda, pätsike kaenla all, kodu poole juba riikliku iseseisvuse ajal.”

„Selgeks on saanud seegi, kui suurt ohtu kujutavad endast Lääne superdemokraatiale Balti riigid. Hunta tegevus siinmail mõisteti alles siis hukka, kui hakkas selguma, et maa koonduslaagriks muutmine ei ole õnnestunud ühe hingetõmbega.”

Jah, hirm oli nahas, ja silmad suured.

„Alla anda ei ole võimalik. Sest see lihtsalt ei ole võimalik. /…/ Ainus kindel asi on läbi kogu meie elu olnud ebakindlus. See teeb mõtlikuks, see teeb väärikaks. Annab kindluse, et kestame! Sest meid pole siiski võimalik üllatusega rabada.”

Noh, see oli juba retoorika. Pärast Moskva sündmuste lõppu sain kirjutada nõnda.

„Nüüd, kümmekond päeva pärast drakooniliste sündmuste algust Moskvas, tundub toimunu olevat toimunud mingis teises reaalsuses. /…/ See oli kui mingi nätske, aegapidi kokku tõmbuv kummist ruum, milles elasime need päevad, liigutamata oimugi, et seda kokkukoondumist kuidagiviisi peatada. Klammerduti raadiote külge, justkui jõu kaotanu õlekõrde.”

Nüüd, 20 aastat hiljem, võib vaid teatud tõenäosusega meenutada – millele me noil päevil lootsime? Ega ju ei lootnud reisivõimalustele, oma majadele, autodele, suhtlemisvõrgustikele, nutitelefonidele, ohtratele poeriiulitele, kiirlaenudele, e-riigile. Lootsime lihtsalt sellele, et meid ometi kord jäetaks rahule. Lootsime rahule ja vabanemisele rahutust valest. Kas selle saime, otsustagu igaüks ise. See on täna võimalik.

Tiit Kändler

 

 

 

lugemis.vara | Matemaatika | News

Kaosest korra otsija ülestähendused

01.08.2017

See on Tiit Kändleri essee, mis ilmus Postmehes 01. augustil.

¤

Engelbrecht

 ¤

¤

¤

¤

¤

¤

Jüri Engelbrecht

Akadeemilised mõtisklused

Sari „Eesti mõttelugu“ nr 133. Peatoimetaja Hando Runnel

Toimetaja Kristina Lepist

Ilmamaa, Tartu, 2017, 446 lk

 

Eestil on vedanud niikuinii. Lisaks veel sellega, et meie Runnel ei piirdunud oma luulereaga „mõtelda on mõnus“ ainuüksi mõtlemise ajusisese lõbuga. Tänu temale ja ta kolleegidele on meid õnnistatud juba „Eesti Mõtteloo“ sarja 133. köitega. Neis köidetes leidub ka igat masti teadlasi. Tänu puhtale kaootilisele juhusele on õnn avaldada lugu akadeemik Jüri Engelbrechti raamatust päeval, mil temal, ühel meie kultuuri alustalal, teaduseetika eeskujul ning kelmika ja vilka mõtlemise ja tegutsemisega inimesel on sünnipäev!

Nii et – head uut teadusaastat, hr Nonlinearius!

Kes akadeemik Jüri Engelbrechti lähemalt teab, see ei ole üllatunud, et üle teadusmaailma tunnustatud mittelineaarsete lainete ja lainetaguste nähtuste asjatundja on ise parasjagu mittelineaarne mees. Mida ta kõike pole teinud ja tegemas ning oma alati heatahtlikult muigel näo taga mõtlemas. On see mõne ülikeerulise võrrandi lihtsustamine, et too lahenduvaks muutuks, muusika ja tippkirjanduse nautimine, noorte kolleegide innustamine, suusatamine või mööda maid ja meresid rändamine, et osaleda küll lõplikus, ent ometi siinkohal kokku arvutamatus hulgas erinevate teadlaste akadeemiates, kogukondades, vennaskondades.

Raamatus on sellest tegevusest juttu piisavalt.

Keerulise maailma ekspert, kaosest korra väljanoppija Engelbrecht on maailmale omaselt paradoksaalsel moel talupojamõistusega mõtleja. Nagu õpetas mind akadeemik Jaan Einasto: see on, kui ise otsustad, ise teed ja ise ka vastutad. Mina julgen lisada: ise ka oma tegevust lihtsal ja võluval moel selgitad. Ses mõttes on Jüri Engelbrecht võrreldav nii Jaan Einasto kui Endel Tulvingu kui astronoom Ernst Öpikuga. Ning kindlasti oma õpetaja Nikolai Alumäega, keda autor mitu korda oma raamatus heatahtlikult meenutab.

Loodan, et võimalik lugeja ei kohku seda raamatut lugeda ja ehk abistab mu siinne ülevaade mõista, kuidas need omapärased teadustööd on Englebrechti loodud teaduse tippkeskusesse ehk CENSi  kui  ämbliku poolt üles nopitud ja ühtsesse võrgustikku kootud näilises kaoses tekitanud korra.

Mina näen selles raamatus heatahtlikule lugejale võimalust liikuda mitte niivõrd hirmkeerulises matemaatikas, kui tajuda end matemaatiliste kaartide majakesse mitte sulgenud matemaatiku mõttemaailma. Et Engelbrecht on olnud Eestile olulistel aegadel meie teadusinstitutsioonide eesotsas, saame siit nuusutada tükikest meie riigi uustekke ajalugu 1990. aastatel, seda, kuidas Eesti lõimus maailmaga, seda, kuidas üks reaalteadlane näeb maid, mida on korduvalt külastanud ja kuidas tema näeb mõttemaastikku, mis meid paratamatult ümbritseb. Engelbrechti raamatu üksikud peatükid on eraldi loetavad, soovitan alustadagi tema tegemistest, romantilistest reisipiltidest ja lugeda vahelduseks ta kogutud mõtteid. Ning mõtiskleda intervjuu üle, mille on Engelbrecht teinud iseendaga.

Püüan nüüd seletada, mis asi kaos ja mittelineaarsus ja keerulisus on, näpates seletuse Engelbrechti vaeva näinud tööst. (Korduvalt rõhutab ta oma raamatus, et teadlane olla ei ole naljaasi, see on raske töö. Eks siis tulebki selle töö vilju maitsta!) Kõigepealt nimest. Me saame teatmekirjandusest lugeda, et Engelbrechti-nimelisel mehel on olnud Eestis paik nii teaduse korraldamisel kui Eestimaa valitsemisel. Nimelt oli aastatel 1842–1859 Eestimaa tsiviilkuberneriks Koigi mõisas sündinud Johann Christoph Engelbrecht von Grünewaldt. Ent selle suguvõsaga pole Jüri Engelbrechti sõnul temal mingit pistmist, pigem ei osanuid ta esiisa enesele hoobilt nime valida, niisiis mõisnik pani.

Kui maailm on mittelineaarne, siis on selle tipp on kas noatera või valemis lõpmatusse hüppav funktsioon, mis vajab julmalt renormeerimist. Ütleb Engelbrecht: „Maailma keerukuses ja mitmekesisuses on ometi oma reeglid ja teinekord ka peidetud lihtsus. Et sellest aru saada, ei piisa ühe teadusvaldkonna uuringutest, vaja on mitmeid vaatenurki ja ühiseid pingutusi. Nüüdsed valdkonnad haaravad tahkise mehaanikat, pehmisefüüsikat, mereteadust, biofüüsikat, optikat, juhtimissüsteeme, sotsiaalsüsteeme ja matemaatikat. Ka biomeditsiinitehnika ja proaktiivsete arvutisüsteemide grupid on oma selge panuse andnud interdistsiplinaarsuse arengusse.“

Niisiis. Me elame mittelineaarses maailmas. „Kui sõnale on lisatud “mitte”, siis tähendab see eitust ning argielus pole see alati meeldiv,“ kirjutab Engelbrecht. Mõiste “mittelineaarsus” peegeldab aga ühelt poolt teadusajaloo arengut alates lihtsatest selgitustest ja teiselt poolt harjumisi, mille muutmine uute teadmiste põhjal alati raske on. Nimelt valitseb “lineaarses” maailmas võrdelisus – põhjus ja tagajärg on võrdelised. Hea ja lihtne seos, mille geomeetriliseks väljundiks on sirgjoon.

„Et kõik muutub, teadis juba Herakleitos umbes 2500 aastat tagasi. Mittelineaarse dünaamika ajalugu on põnev, praegustele mõistetele pani alguse prantsuse matemaatik Henry Poincaré oma kolme keha (Päike, Maa, Kuu) liikumise analüüsis 1880. aastatel ja 20.sajandi teisel poolel koos arvutite arenguga algas mittelineaarse dünaamika võidukäik.“ Muuseas ja eelkõige: Poincaré kolme keha probleemi täpselt ei lahendanudki ja siiani on teadmata, miks Maa., Kuu ja Päike omavahel koos hoiavad.

Engelbrecht rõhutab korduvalt dünaamika ilu, mille ühe näitena kirjutab meile lahti üksiklaine solitoni olemuse. Siiski ei ole ta nii subjektiivne nagu oli antiaine matemaatiline avastaja, kvantfüüsik Paul Dirac, kes kuulutas, et kui ilus matemaatiline tulemus ei ühti empiiriaga, tuleb empiiriat muuta. See-eest on Engelbrecht eesti teaduse lähiajaloo käsitlemisel samal ajal aus ja pieteeditundeline.

E. M. Cioran, rumeenlane Pariisis ütles: „Lõhkumisisu on meisse nii sügavalt juurdunud, et mitte keegi ei suuda seda sealt välja kiskuda… Tark on lihtsalt rahunenud, tagasitõmbunud lõhkuja. Teised on tegevlõhkujad.“ See sobib ka eesti teadusreformijate kohta.

Näide igapäevadünaamikast: kujutage ette, et te ei jaluta mitte nõnda, et iga sammuga astute edasi meetrikese, vaid esimese sammuga meetri, teisega kaks, kolmandaga neli ja nõnda edasi.11. sammuga astute juba 1024 meetrit ning olete edenenud kaks kilomeetrit. Teie kaaslane alustab samast punktist, kuid nurgasekundi murdosakese suunaga põhja poole. Kas kaks jalutajad veel kunagi kohtuvad? See on mittelineaarne jalutuskäik ja iga korralik mittelineaarsete nähtuste analüütik pakub teile vastuseks jalutuskäiku kirjeldava võrrandi ning selle lahendi, mis üldjuhul on saadud mingis lähenduses. Mida muud on teil teha, kui teda uskuda, sest ise suudate kontrollida vaid praktiliselt, kas näete veel kunagi oma sõpra või mitte. Kuid elu ei ole tavaliselt nii pikk, et kontrollida matemaatikut katseliselt. Parajat irooniat lubades võime määratleda mittelineaarsete nähtuste uurijad kui teadlased, keda me peame võtma hea usu peale. Jüri Engelbrechti igatahes.

 

News | Ökoloogia

Inimese ja looduse ühisosa: linn

12.06.2017

See Tiit Kändleri esse ilmus Eestki Looduse juuninumbris

Kui pea on kärbseid täis, siis pole õuel kärbseid ollagi. Isegi toas mitte. Tänavu tuleb küll loota, et kui ilmamehe jutu järgi jäi talv olemata, siis ehk ei jää kevad tulemata. Kärbsed peas aga sumisevad, kuna olemata talve uudisteemad kumisevad segiläbi: kes kaevas auku, kes ajas auku kinni, kes paisutas jõge, kes lasi paisu õhku, kes rajas raudtee, kes laskis selle maapõhja, kes ehitas üle tee põdrakesele mõnusa silla, kes luges kokku, et põdrake lipsas ikka üle tee mujalt. Kõige selle juures tuleb rõõmustada, et tegevus käis keskkonna hüvanguks ja enamasti peades, kus kärbsed pesitsemas.

Kui see jutt on õige, et inimene on looduse osa, siis kas on õige ka see hüpotees, et loodus on inimese osa? Kas inimene on õppinud, kuidas neid kahte osa omavahel kokku viia? Jah, on, ja selleks tuleb vahel reisida mõnda linna, et end rahustada. Üks selliseid on Viini linn. On vähe Euroopa pealinnu, kus läbi aastatuhandete on käinud risti ja rästi läbi nii erinevate rahvaste ja usundite kolonnid, hordid ning röövsalgad. Roomlased ja germaanlased, slaavlased ja normannid, hispaanlased ja juudid, ungarlased ja böömlased, türklased ja itaallased, kõnelemata juba eri kanguse- ja tugevusprooviga sakslastest.

 

Minu meelest on linn see paik, kus on näha käige paremini inimese ja looduse ühismäng. Siin saavad kokku – või vahel ka ei saa – inimese ja looduse ühisosa. Kui sa jõuad enese jaoks uude linna ja kui oled õnnistatud igasuguste konverentside, seminaride ja töötubade puudumisega, saad tajuda, mis maik man on. Viinis on tasakaal paigas. Kummaliselt rahulik, kummaliselt ruumikas nii jalutajale, jalgratturile, autole kui ka puudele, põõsastele ja muidugimõista viini vorstidele, toolidele ja õllele ning veinile.

Jah, see Viini vein annab ehk enim teada, kuidas on lood looduse ja suurlinna vahel. Olgu tänatud Rooma keiser Marcus Aurelius Probus, kes omaenese elu hinnaga lõpetas Issanda aastal 278 ära keelu ajada veini mujal, kui nüüdse Itaalia aladel. Probus tahtis hoida oma leegionäre pidevalt töös ja laskis neil Viini põhja- ja läänenõlvad viinapuid täis istutada. Muidugi ei olnud vein siin tundmatu, seda ajanud keldid, kuid mida nood ka Euroopas teinud ja tegemas pole. Kuigi Probuse vahvad leegionärid polnud arvatavasti just janutud, ajas neil hinge keema, et nemad, vahvad sõjamehed, peavad tegema talumehe tööd. Ja nottisid vaese Probuse aastal 282 maha (või jootsid surnuks). Asjalikumad ajaloolased arvavad, et mõrva taga oli itaalia veiniärimeeste huvi. Nii või naa, nüüd on Probusest jäänud Viini põhjaküljele temanimeline tänav ning ohtralt viinapuupõlde ja veinikülasid oma veinitubadega.

Kui trammiga Punase Viini ajal töölistele 1930. aastal ehitatud kilomeetrisest Karl-Marx-Hofist mööda kolistada ja kui ei juhtu olema tähtsaim riigipüha 1. mai, siis pidavat üles veinitubadesse ka mängurongidega saama. Aga kui on 1. mai nagu meiega juhtus, siis saab vantsida ka jala, olles julgust saanud parlamendihoone ja raekoja eest orkestri mürtsudes läbi marssinud kolonnist, kes lisaks harrastele loosungitele maalitud palvele, et muslimid on teretulnud, lehvitasid ka loosungit, millelt lahkelt vaatasid tuleviku poole Marx, Engels, Lenin Stalin ja Mao. Üsna pleekinud loosung, muide, korduvkasutusest.

Viin aga on loodusest läbi põimunuid, nii et ruumi jääb ka marssijatele, ja olgu kohe öeldud, et linna kuulsaid ning kahe-kolmekordseid alleesid noorendatakse pidevalt, istutades uusi puid vanakeste asemele järkjärgult, mitte terve linna kaupa. Ja ime küll, erinevalt näiteks Brüsselist ei pargita autosid alleede keskmisse, jalakäijatele jäetud teele.

Nojah, kastanid õitsevad kunagi ehk meilgi, ent viinapõldude vahel sulfiidivaba veini limpsides ja alla linnale vaadates tunnedki end looduse osana. Tuleb piiri pidada, et ei hakkaks end tundma looduse peremehena.

Viin.FranzJoseph2.2017

Ma ei tea, kes ja miks, kuid meil Eestis on levinud müüt, et oleme kõige enam kannatanud rahvas. Vähe sellest, mingit küsitlussõltlased on välja küsitlenud, et oleme kõige õnnetum rahvas. Ei ole, ärge lootkegi! Isegi sellel poolest pole me erilised. Kui vahel satute näiteks teistesse Euroopa pealinnadesse, tehke väheke eeltööd, vaid umbes nüüdse magistrikraadi jagu, lugege ja uurige ning mõistate, et omad hädad ja viletsused on olnud igal pool. Milleks neile siis meie omi kaela määrida. Loodus linnas tähendab oskust leida ühisosa kahe hulga – rahvahulga ja metsahulga vahel. Mitte ükski allee ei hakka kasvama pottides, nagu Tallinna nn peatänava mõttehiiglased loodavad. Metsahulk vajab ruumi, inimhulk vajab ruumi. On meie õnnetus, et Tallinnast on osatud meisterdada sihuke konglomeraat, kus tundub et ruumi pole ei ühel ega teisel. Ja oleks siis meid palju võtta.

Ega ei pea kaugele pagema: uurime Helsingit, naudime Stockholmi, rõõmustame Riias. Ja pidagem meeles, et isegi Veneetsias, kus ju maad juppjagu, on loodus iga linnakodaniku ukseläve ees, mis sest, et enamasti vedelal kujul.

Võib-olla ei seisne tervis ja hingerahu vaid higist haisvas spordisaalis rassimises või enda ja teiste tervist ohustavas jooksus ja rattasõidus mööda Tallinna olematuid ja ohtlikke jalgtänavaid. Võib-olla annab meile heaolu ka see, kui linn võetakse arendajate käest edendajate kätte? Tervisliku tormijooksuga.

 

Viin on lisaks muule olnud kummalisel kombel viimane kants, mille müüride alla Osmanite väed kaks korda jõudsid. 1529 Suleiman Hiilgava ja 1683. aastal suurvesiir Kara Mustafa juhitud vägedega. Haned päästis Rooma, kliimamuutus kristluse: tol Väikesel Jääajal oli kevadine ilmastik nii karm ja tormivihmane, et türklaste armaada jõudis Suleimaniga vaevalt linnamüüride alla oma tohutute kahuritega, kui hakkas sadama lund ja türklased ümber pöörasid. Järgmiseks korraks oli viinlased teinud parema kodutöö ja kindlustused kindlamaks muutnud. Ent neid õõnestasid seestpoolt juutide ja katoliiklaste, protestantide ja muu rahva ühisosa puudumine. Kuid türklastele jäänud paar kuud lõpetas Poola kuninga John Sobieski abivägi. Niisiis – ärgem pahurdagem kliimamuutuste üle!

Vana kurb keiser Franz Joseph I jäigi Esimeseks ja suri vaid kaks aastat enne oma impeeriumi lõppu, 1916. Nüüd seisab ta kõige kurvem monument, mida näinud olen, Viini Burggartenis, Mozarti hiilgavast kujust põõsaste-puudega eraldatud, vastu Goethe tänavat, kepp kaenla all, pilk pööratud häbelikult maapinna poole, kus õitseb tulpe, nelke ja muud nipet-näpet.

Või kes teab – praegu igatahes lehvivad maiparaadil plagud „Muslim Wilkommen!“

Kes veel või juba jälle ei usu, et maakera on ümmargune, mingu paariks nädalaks Viini ja ärgu jätku külastamata selle ohtraid ja mõnusalt haaravaid kunstimuuseume ning istumata vana lossi raamatukogu kupli all, pea kohal raamatute rivid. Kes neid loeb? Loevad nad ise? Ma arvan, et loevad. Austria-Ungari impeeriumi mälestusena ent pakutakse kohvikutes gulašit nagu Budapestis, veidi vesisemat küll, kuid hää, Alpidest voolava veega.

 

Vana Franz Joseph I kurvastab Viini Burggarteni pargis, mida õnnistavad ka Mozarti ja Goethe rõõmsad kujud.

Foto: Tiina Kaljundi

 

Viini äärelinnas püstitati ülemöödunud sajandi lõpul kolm hiigelsilindrit, mille sees gaasihoidlad. Gasometritena tuntud tornidest jäeti väliskest, mida kaunistab kevadel graafiline loodus. See leidub kunstitubasid, eluruume ja muudki.

Foto: Tiit Kändler

 

Viini põhjaküljel leidub hulganisti juba roomlaste istutatud viinamägesid. Seal saab maitsta looduse ande ja inimeseks muutuda.

Foto: Tiina Kaljundi

Antropoloogia | News | to.imetaja

Inimkliima lepped ja leppimatus

12.06.2017

See teaduskirjanik Tiit Kändleri essee ilmus Postimehes 07. juunil 2017

Kas te suudate ette kujutada, et kui süütate sõpradega jaanitule, siis paiskate atmosfääri  väikese koguse süsihappegaasi, mis ei lase Maal piisavalt jahtuda ning nihutab kliimat soojemaks? Inimene tajub maailma enesele kohastes mõõtmetes. Jalg, seljatäis ja päevatee on pikkuse, massi ja aja loomulikud ühikud. Nanomeeter, miljard ja veel vähem valgusaasta pole meile tajutavad. Sellest suur osa hädasid pihta hakkab. Mida ütleb teile ppm ehk miljondik osake atmosfäärist, veel vähem näiteks tonn kasvuhoonegaasi?

Kui ka inimene on kliimamuutuse vallandanud, siis tegi ta seda kahtlemata omaenese jõust teadmatuses olles. Rootsi füüsik ja keemik Svante Arrhenius, esimesi Nobeli preemia laureaate aastal 1903, selgitas jääaegade toimumist ning juhtis juba 1896. aastal tähelepanu kasvuhoonegaaside võimalikule mõjule Maa soojenemises. Tema lihtne reegel ütleb: „Kui süsihappegaasi sisaldus atmosfääris suureneb geomeetrilises progressioonis, siis keskmine temperatuur suureneb aritmeetilises progressioonis.“ Tuletab meelde Thomas Malthust ja tema sajand varasemat teesi, et inimeste arv kasvab geomeetriliselt, toiduhulk aga aritmeetilises progressioonis. Nälg on maailmas kahjuks olemas, kuid mitte nii laias ulatuses kui ennustati.

Seejärel tuli Charles David Keelingi avastus 1960. aastal, et Maa hingab igal poolaastal välja, siis jälle sisse, kuid süsihappegaasi sisaldus atmosfääris suureneb. See on too kuulus hokikepi graafik. ÜRO kliimamuutuste konverentsid Kopenhaagenis 2009, Durbanis 2011, Kyoto aastatepikkused, kuni 2012 kestnud läbirääkimised, nüüd siis 2015.aastal Pariis kuni tänaseni. Vahepeal veel Rio de Janeiro. See on kui variolümpiamängude graafik, mängude, mille võitjate  pingerida tagantjärele muudkui muudetakse ja muudetakse, sellest öpopöast saaks kirjutada pakse raamatuid, ja ongi kirjutatud, ent kes neid loeb?

Ilmataatinimene

20 aasta eest ennustati, et Eesti meri  tõuseb praeguseks meetri. Praeguseks on maapind kerkinud mõni millimeeter aastas, vabanenuna jääkoore raskusest. Kyoto puhul oli juba ette teada, et seal midagi otsustada ei saa, sest Venemaa, Hiina ja USA, vist ka Jaapan panevad veto. Sellest hoolimata saabus Eesti delegatsioon Kyotost võiduka teatega. Pärast Kopenhaagenit oli  sama lugu. Kaua sa usud, et „hunti pole karja kallal!“ Mis on juhtunud praegu?

Väga lihtne asi. Venemaa ja  Hiina lubavad, mida vaja, sest kontrollida ei saa niikuinii. Donald Trump kui Euroopa jaoks erakordselt ebamugavalt aus, ütleb, et tema seda mängu kaasa ei mängi. Küsimus on, mida see muudab? Vastus: ei muuda suurt midagi.

Teaduslik konsensus on, et kliima muutub ja muutused on suuresti tingitud inimtegevusest ja muutus on suuresti pöördumatu. Valitsustevaheline kliimamuutuste paneel IPCC järeldas 2014. aastal, et kliima soojenemine on 95% tõenäosusega inimese põhjustatud. 2007. aasta detsembris oli IPCC samas asjus saanud Nobeli rahupreemia. Aeg voolab tagurpidi – pange tähele lõputuid segadusi!

Muidugi kaasnesid skandaalid, paljastused. Fossiilkütuste pealt saab teenida roppu raha.

Milankoviči tsüklitest jääaegade tekkel ja ookeanivete tsirkulatsioonist võime jäädagi rääkima. Golfi hoovus oleks juba ammuilma pidanud peatuma. Meenutan meie Ernst Öpikut, kes tuletas juba 1950.aastate lõpul Maa kliima perioodilisuse Päikese kui tuumaenergia ahju tootlikkuse muutumisest. Enne kui uurime Donald Trumpi nõuandjate produktsiooni, õppigem omaenese geeniustelt!

Mida on hakatud rääkima nüüd? Et nn taastuvenergiaga inimkond hakkama ei saa, kui tahame süsihappegaasi pidurdada, tuleb käiku lasta tuumajaamad. Mis kahjuks on ikka põhimõtteliselt samad nagu esimene jänkide Manhattani jaam. ITER eht fusioon ehk termotuumajaam, kus kergeid tuumasid ühendatakse, on seisus, et selle prototüübi kallal näritakse hambaid: suurenenud kulud, tulutud sehkendamised, ja lõppude lõpuks võib see osutuda liiga väikeseks.

Eestituum

Jah, kui ka inimene kliimamuutuse vallandas, siis ei teinud ta seda kindlasti mitte tööstusliku revolutsiooniga, vaid palju varem, koriluselt ning küttimiselt põllumeheks hakates. Oli vaja saada haritavat maad, oli vaja niisutada, leida kasutusviis Niiluse üleujutustele. Inimesele on meeldinud ilu, ta on leidnud ilu eri mastike vaheldumises, meie mail leidis ta ilu pankrannikul ja Pärnu jõe ääres Pullis. Või kuhu tal kaugemale minna oligi? Mets tuli maha põletada, maid hakata kas vahetama või hülgama ja edasi nihkuma, nii nagu Põhja- ja Lääne-Eesti loopealsetega sündis.

Homo sapiens jäi ainsa inimlase perekonna liikmena ellu. Kuid ta ei oska siiani rehkendada, kui palju tema leiutised saastavad, kui arvestada kõiki tootmise ja hävitamise astmeid.

Ma võin vabalt väita, et elektriauto saastab enam kui sisepõlemismootoriga auto. Kusagilt ju elekter tulema peab. LED-lamp saastab enam kui hõõgniidiga lamp. Elektriga või gaasiga kütmine saastab enam kui puudega kütmine. Rääkigu meile Brüsseli ülemakstud ametnikud mida tahes. Meie läpakad ja nutiseadmed muutuvad üha pisemaks, kuid akud, mis neid toidavad, ei muutu. Gaasiauto on muutunud nonsensiks, veel enam vesinikul töötav auto, nagu ka on vaibunud eufooria kütuseelemendi ümber.

Nullenergiaga maja on lihtsalt uus perpetuum mobile, mida huvirühmad lollide poliitikute kaasabil läbi suruvad. Füüsikaliselt pole sellist asja meie universumis olemas. Meie rohemaailm on muutunud projektijahtimiseks, söömaahelaks. Tahate, taastame soid? Palun. Kuigi soode taastamine paiskab atmosfääri lugematul hulgal kasvuhoonegaase, sood omakorda metaani. Tahate, ehitame hüdroelektrijaamad. Palun. Tahate, laseme elektrijaamade paisud õhku. Palun.

Kuid kes suudaks välja arvutada, mis saastab enam: kas superfirmad, mis hiiglaslikesse pakenditesse raputavad näputäie ravimeid või pudruhelbeid, või kodanik, kes neid karpidest üles leidma peab?

Kõige lihtsam on süüdistada kodanikku. Kuid tõsiasi on, et näiteks Hispaania meeletute dotatsioonide lõppemine päikeseenergiale ja tuuleveskitele on donkihhoted pannud kahtlema nn roheenergia keskkonnasõbralikkuses. Mõelgem, mis toimub meil Hiiumaal ühe tillukese tuulepargi ümber. Ja ärgem mingem lolliks ning andkem aru, et Eesti vabadus põhines eelkõige põlevkivil. Alati saab toota puhtamalt, see on kindel. Selleks on Eestil vaja insenere. Aga rohelised elektronid ei ole värvilt rohelised, võrreldes põlevkivielektronidega ja kes suudab neid eristada, kui meile üht teise pähe kallimalt müüakse?

Ja lõpuks: kui palju lisavad kasvuhoonegaasi keskkonna-ametnike loendamatud hulgad, sõites mööda maailma kliimakonverentse?. Imekütust ei ole ega tule, nullmaja ei ole ega tule. Meie trump on kindlameelne ja arukas kokkuhoid – nii rahva kui olendina.

 

Antropoloogia | Astronoomia | Bioloogia | News | to.imetaja

Täiskuu ei lase end maha magada

01.06.2017

 

See teaduskirjanik Tiit Kändleri artikkel ilmus Maalrehes 01. juunil 2017

 

 

Kui täiskuu paistab teie aknasse, võib olla teie uni häiritud. Kuid kui akna sulete luukidega, kas ka siis mõjutab Kuu teie und? Viimaste teadusuuringute valgusel (loodetavasti mitte kuuvalgusel) võib kinnitada, et mõjutab küll.

 

Ameerika teadusajakirjanik Matt Kaplan on oma möödunud aastal ka eesti keeles avaldatud raamatus „Teadus maagia taga“ ajaloole lähenenud nõnda, et müütidel ja maagial on taga midagi teaduslikku, st korratavat ja reeglipärast. Evolutsioon on kõikvõimas ja me ei tea pooltki oma tegelikest võimetest. Inimese ajalugu on täis müüte Kuu mõjust inimesele. Eriti on lummanud täiskuu. Kuuvalgel vihtlevad nõiad, täiskuu öösel erksad vampiirid, kuutõbised magades ringihukujad inimesed.

Muidugi teadis kuulus saksa astronoom Johannes Kepler 400 aasta eest, et astroloogia, st sünnihetkel valitsenud taevamustri kuju inimese tulevikule on leebelt öeldes oraaklus, kuid selle eest maksti palka, ja sai teha astronoomitööd.

Kuid pole üllatus, et inimesel on varjatud võimeid. Sest lõppude lõpuks, kui Jeesus ütles: „Sinu usk on sind päästnud,“ ega see ju vale ole. Õnnetunne on seotud teatud geenide avaldumisega, aga ka oma elust viimase võtmisega, pühendumisega millelegi ühiskondlikult olulisele, „oma saatuse lõimimisega jumalatest ja inimestest koosnevasse maailma, mis on sinust enesest palju suurem,“ nagu sõnastab südame siinusarütmiat uuriv Põhja-Carolina ülikooli psühholoog Barbara Fredrikson.

Kuu.ML.Kujund.

Meis toimib nii ööpäevakell kui kuupäevakell

On ammuima teada, et inimese ja loomade elu juhivad ööpäevarütmid ehk peenemalt tsirkadiaanrütmid. Ent pimedasse ruumi suletud inimesel käib tsirkadiaankell valesti, jäädes tavaliselt maha. Kas pole see mitte seletatav Kuu mõjuga? Kuu teeb ümber Maa tiiru umbes 29,5 päevaga, kui Maa pöörleb ümber oma telje 24 tunniga. Kalendrikuu ehk umbes kaheteistkümnendik aastat on aga pikem, üle 30 päeva. Enne mõneti ajalooliselt segaseks kujunenud aasta- ja kuukalendrit mõõtis inimene Kuu tiiruga ajavahemikku, mille ta nimetas kuuks. Tänu maa pöörlemisele näeme Kuud tõusmas ja laskumas, tänu sellele, et aeg-ajalt jääb Maa Kuu ja Päikese vahele, näeme täiskuud ja edasi erinevaid faase. Et Maa orbiit on ekliptika ehk Maa ümber Päikese tiirlemise tasandiga veidi kaldu, siis on kuuvarjutusi vähe.

Saksamaa Max Plancki käitumisfüsioloogia instituudi füsioloogid Martin Wikelski ja Michaela Hau avaldasid 1995. aastal ajakirjas Journal of Biological Rythms artikli, milles nad tõestasid, et roomaja Galápagose meriiguaan, kes sööb vetikaid paikades, mis jäävad enamasti vee alla, ent paljastuvad mõõna ajal, teab mingil moel mõõna alusaega. Kui Kuu asub meie peade kohal, tekitab see ookeanis tõusu, kui vastaspool maakera, siis mõõna. Kuu asub meie peade kohal umbes iga 12,5 tunni järel. Kuidagi tunnetavad roomajad seda perioodi – kuidas, on jäänud saladuseks. Kuid tsirkalunaarseks kellaks nimetatud (tsirkadiaankella eeskujul) mehhanism hoiab nii roomajaid kui ka meid instinktiivselt püsimas rütmis nii Kuu faasidega.

Šveitsi Baseli Ülikooli kronobioloog Christian Cajocheni ja tema kolleegide töö, mis avaldati 2013. aastal ajakirjas Current Biology, järeldab üsna usaldusväärselt, et inimesel on pistmist Kuu faasidega, mida võib loetleda kaheksa või lihtsamalt neli: täiskuu, kahanev poolkuu, uus kuu, kasvav poolkuu. Täpsemalt tegid nad kindlaks, et inimese uni on täiskuu ajal lühem ja põgusam. Täiskuu justkui ei taha, et me selle maha magaksime.

Et Maal on Kuu, mis on enne elu teket löödud Maa küljest mõne Marsisuuruse Theia poolt välja, omab meie jaoks üliolulist tähtsust. See nimelt stabiliseerib Maa orbiiti Päikese ümber, tehes elu võimalikuks. Tundub olevat ime, et Kuu on pööratud Maa poole kogu aeg vaid ühe oma poolega ning Kuu on nii suur ja meist nii kaugel, et katab parasjagu päikeseketta, võimaldades päikesevarjutuse. Kuu ühe palge on meie poole lukustanud looded, loodete mõjul aeglustub veidike ka Maa pöörlemine ümber oma telje. Kolme keha probleem ehk matemaatiline mõistatus on nõnda raske, et täpselt pole matemaatikud suutnud seda lahendada – seda enam peame tänama universumit, et meie Päikese-Maa-Kuu süsteemis on just täpselt selline olukord nagu on ning kaootilised protsessid on väikesed.

Teadlased valisid vabatahtlike seast 31 inimest, nii mehi kui naisi, kel ei esinenud hingamisraskuste tõttu tekkivat uneapnoed. Nad sulgesid katsealused akendeta uneruumidesse ning ei andnud neile teada uuringu eesmärgist. Uni jaguneb mitmeks eri staadiumiks, millest olulisemad on kiirete silmaliigutustega uni (REM) ja aeglaste silmaliigutustega uni (NREM). Katsealustel mõõdeti sügavama, NREM-une pikkus, une kogukestvus, uinumise aeg alates tule kustutamisest, elektroentsefalogrammi EEG aktiivsus sagedusvahemikus 0,5 – 1,25 Hz, samuti õhtused uinumist soodustava hormooni melatoniini nivood.

Tulemused näitasid, et täiskuuöö tähendab 19 minutit lühemat und, madalamat melatoniini taset ning aeglase une kestvuse vähenemist. Ka subjektiivselt tundsid inimesed end täiskuulähedastel hommikutel vähem väljapuhanuna.

 

Ärgem muutugem kuutõbisteks

Teadlased on veendunud, et kuigi Kuu põhjustab loodeid, ei oma gravitatsioonijõud une kvaliteedile mingit mõju, kuna isegi nii suurel veekogul nagu Läänemeri on looded mõne sentimeetri piires. Kuid teistest uuringutest on teada tsirkalunaarsete tsüklite mõju naise menstruatsioonitsüklile. Samuti mõjutab Kuu langetõvehaigete hoogusid, kuid tsirkalunaarse kella, nii nagu ka tsirkadiaaankella ja aastaaegade kella olemused on jäänud siiani „müstiliseks“, nagu Cajochen ja ta kolleegid tunnistavad.

Mina lugesin veel kahte artiklit. Üks neist on uurimustest Ungari Sewllelweisi Ülikoolis ja avaldati ajakirjas Sleep Medicine 2014.aAastal. Selles oli katsealuste arv koguni 319, meeste vanus keskeltläbi 45 ja naistel 51 aastat. Nõnda on ka selle uuringu mõõtevead pisemad. Järeldused ent samad: pisem unetõhusus, lühem sügav NREM uni, pikem REM-uni.

Kuigi täiskuud on vahel seostatud ka sündide sagedusega, ei ole sellekohaseid tõestatud uuringuid. Siiski on kuutsükliga seostatud nii liiklusõnnetuste arvu, kuritegude ja enesetappude arvu, psühhiaatrite külastusi ning südamehäirete arvu. Nende kohta on ka avaldatud artikleid, kuid nii kindlat järeldust, nagu täiskuu ja une kvaliteedi seosest, ei saa veel teha.

Kolmanda artikli, mida lugesin, on kirjutanud Göteborgi teadlane Michael Smith ja tema kolleegid. Nemad uurisid 47 vabatahtlikku. Ja leidsid, et une kestvus väheneb täiskuu ajal keskeltläbi 25 minutit ning rahutu, REM-uni pikeneb 30 minutit, samuti muutuvad EEG signaalide kujud. Kuid et uuriti vaid hea unega inimesi, jätavad teadlased lahti ukse kahlusteks.

Matt Kaplan viitab oma raamatus veel ühele artiklile, mille tulemused siintoodud tulemustega ei kattunud. Kahjuks ei ole see artikkel minule kättesaadav.

Loetu põhjal (artiklid on avaldatud väärikates, eelretsenseeritavates ajakirjades) jääb mulle kerge veendumus, et inimese ja Kuu vahel midagi toimub. Ja peaaegu kindlasti mõjutab täiskuu inimese und. Loodan, et lugejad ei satu seda lugu lugedes enese sugereeritud ja välja mõeldud iseenesliku täitumuse ohvriks, hakates põhjendama oma meeleolu ja kasvõi ärrituvust Kuuga, kirjutama oma ebaõnnestumisi kuu peale ja muud sellist.

On ilme tõde, et Kuu vähehaaval Maast kaugeneb, 3,8 sentimeetrit aastas. Ka on ta Maast kord 357 000 kilomeetri, kord 407 000 kilomeetri kaugusel. Kuu mõju üle mõlgutasid mõtteid nii assüürlased kui babüloonlased, põliseestlastest kõnelemata. Meie vanasõnastik kubiseb Kuust, meie keeles on kalendri kuu ja taevakeha Kuu täpselt sama sõna, ning on arvukalt inimesi, kes on kindlad kuufaaside mõjust taimede istutamisele ja juuste lõikamisele. Kellelegi see paha ei tee, ja las siis Kuu mõjutab meie käitumist ka mitte ainult uneajal, vaid päise päeva aal.

 

 

 

 

Telli Teadus.ee uudiskiri