Nobeli preemiad 2017: nullist lõpmatuseni

24. okt 2017

 

See teaduskirjanik Tiit Kändleri lugu ilmus Maalehes 19. oktoobril osaliselt

 

Tänavused loodusteaduste nobelistid uurivad ainet nullist lõpmatuseni, inimene kaasa arvatud. Meid pidevalt läbivad gravilained, eriline meie valke kolmemõõtmeliselt esitav mikroskoop ja meie ööpäevarütmid on saavutused, mis ei vaja küsimust: aga milleks?

 

 

Füüsika. Universum. Gravilained

016. aasta alul teatati gravitatsioonilainete eksperimentaalsest kinnitamisest kahest mõõteseadmest koosnevas eksperimendis LIGO. Mõõdeti kahe, meist 1,3 miljardi valgusaasta kaugusel asuva hiiglasliku musta augu kokkupaiskumisel tekkinud gravilainet. Olen sellest Maalehes kirjutanud (vt 14. märtsi ML). 2017 ehitati mõõteseade täpsemaks ja tundlikumaks, et skeptikuid tulemuse usaldusväärsuses uskuma panna. Kui gravilainete püüdmine saab astronoomidele tavaliseks, muutub universum meie jaoks oluliselt läbipaistvamaks nii mineviku, Suurest Paugust pärinevate gravilainete suunas, kui tuleviku, mustade aukude tekke ja universumi piiride suunas.

Ajaloo irooniana õnnestus äsjane otsene gravitatsioonilainete registreerimine põhimõtteliselt sama seadmega, millega tehti kindlaks, et valgus levib igas taustsüsteemis ühe ja sama kiirusega. Albert Michelson ja Edward Morley tegid Eiunsteini relatiivsusteooriat kinnitava katse 1887. aastal andekalt lihtsal interferomeetril.

Valgusallikast tulev valgus jagatakse poolläbipaistva peegliga kahte omavahel risti kulgevasse harru ja kummagi haru otsas on peeglid, mis valguse tagasi peegeldavad. Poolläbipaistev peegel viib kaks eri teed kulgenud valguskiirt kokku. Kui mõlema kiire teed on olnud täpselt ühepikkused, siis kohtub valguslaine hari harjaga ja signaal kahekordistub, kui vahe on pool lainepikkust, siis üks laine kustutab teise. Meetod on väga tundlik, ent vajab eriti hoolsat isoleerimist mehaanilistest müraallikatest (vt graafik).

LIGO.ML

LIGO on gravilaineid kinni püüdnud veelgi paar korda ja nende sõsareksperiment, Pisa lähedal asuv itaallaste VIRGO teatas samast 2017. aasta augustis.

¤

¤

¤

¤

Tunnustatud ameerika füüsik Kip S Thorne California Tehnoloogiainstituudist oli 1980. aastatel üks mõõteseadme ehitamise plaanijaid ja algatajaid. Mul õnnestus teda kuulata Londonis 2009. aasta suvel peetud maailma teadusajakirjanike kongressil (vt foto allpool). Rainer Weiss on sakslane, kes töötab Massachussetsi Tehnoloogiainstituudis, Barry C Barish on ameeriklane, kes töötab California Tehnoloogiainstituudis. Miks ei antud Nobeli preemiat neile möödunud aastal, pole selge, nagu ei oska arvata, miks sadade ja sadade gravilainete püüdjate seast valiti just need kolm väärikaimat.

Kip.Thorne2.A

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

Kiirkülmutist mikroskoop näeb valke kolmemõõtmelisena

 

Mikroskoobi leiutas 1620. aastatel keegi hollandlane ning see koosnes kahest läätsest. Selle abil uuris kangakaupmaas Antonij van Leeuwenhoeck 1660. aastatel kangaste kvaliteeti. Tänu oma uudishimulikkusele suutis ta avastada bakterid, vereosised, mikroorganismid ja konna vereringe. Saladus oli töötada äärmiselt väikeste läätsedega. Ühel säilinutest on paksus 1,2 millimeetrit ning mõlema külje ümaruse raadius 0,7 millimeetrit. Sellega saavutas ta 270-kordse suurenduse. Nobeli preemia asutamiseni oli jäänud veel 230 aastat. Kuid idee, et mikroskoop avab meile maailma suuruseni null, oli sama originaalne, kui mõte, et umbes samal ajal samuti hollandlaste leiutatud teleskoop avab meile maailma lõpmatuseni. Miks  mikroskoobi lääts valgust murrab, tuli tollal veel välja nuputada. Kuidas murrab, sellest kirjutas Isaac Newton oma 1709. aastal avaldatud ja kuulsaks saanud raamatus Opticks.

Mikroskoobi põhiviga on see, et valgusel on nii suur lainepikkus. See seab piiri, tekitades kõrvaldamatuid moonutusi. Sestap võeti nähtava valguse asemel käiku üha pisema lainepikkusega kiired, kuni leiutati elektronmikroskoop: elektroni lainepikkus on vähimaid, mida teame. Sellega sai hakata nägema aatomeid. Teisalt leiutati, et lühilaineliste röntgenkiirtega saab uurida kristallide atomaarset ja molekulaarset ehitust. Konrad Röntgen oli esimene füüsika nobelist aastal 1901. Elektronmikroskoopia hakkas arenema 1930. aastatel ja sellega seostub nii mõnigi Nobeli preemia.

Aatomjõumikroskoop suudab eristada molekule ja aatomeidki, kuid seda vaid tahke aine, eelistatult kristalli pinnal. Nõnda on elektronmikroskoopia ja aatomjõumikroskoopia pakkunud meile küll toreda sissevaate elutusse nanomaailma alates nanotorudest kuni grafeenini, teiselt poolt aga viiruste maailma, avades hindamatu võimaluse arendada uusi materjale ja võidelda nakkushaigustega.

Kuid see, mida biofüüsik vajab, on uurida suurte molekulide nagu valgud käitumist alul lahuses, seejärel rakkudes. Juba vähemalt 40 aastat on teada, et ühe sellise võimaluse pakub fluorestsents. 1950. aastatel hakati Cambridge’s valgumolekule mõõtma röntgenkiirtega, need enne kristalliseerides. Nõnda avastati ka DNA topeltheeliksiline ehitus.

1970. aastatel arendati välja fluorestsentsi korrelatsioonspektroskoopia. Kui laserkiir fokusseerida, on selles ruumalas eriliselt vähe kiirgavaid molekule ja nõnda saab fluorestseeruva kiirguse footoneid loendades ja nende statistikat rehkendades teada nii nende liikumise kui keemiliste reaktsioonide kohta. Aastaks 2000 valmis esimene fluorestsentsmikroskoop, mille eest võideti Nobeli preemia 2015. aastal.

Ja ennäe – ka 2017. aasta Nobeli preemia, sedapuhku keemiapreemia, omistati uut laadi mikroskoopia leiutamise eest, millega saab näha elusorganismide suuri molekule kolmemõõtmelisena. Šveitslane Jacques Dubocher (Lausanne’i ülikool), sakslane Joachim Frank (Columbia Ülikool, USA) ja šotlane Richard Henderson (Cambridge) töötasid aastaks 2013 välja uue meetodi – täiustatud elektronmikroskoobi, mida nimetatakse krüostaatiliseks, kuna biomolekulid ühel mõõtmise astmel külmutatakse ülikiirelt vedela etaani ja lämmastikuga.

Makromolekulide struktuuri on mõõdetud ennegi, ja nimelt tuumamagnetresonantsi meetodil. Selle meetodi täiustamise eest said Nobeli preemia Kurt Wüthrich ja Richard Ernst ning Eestis viis meetodi maailmatasemele Endel Lippmaa. Ent elumolekulid ja nende kuju muutumine on nii keeruline, et nende taipamiseks tuleb rünnata mitmelt poolt.

 

Öö ja päev meie kehades

Kui und ei tule, on öö pikk. Kuigi objektiivselt selle pikkus ei muutu. Maa pöörleb meist sõltumatult. Elusolendites kulgevat kella, mis on seotud öö ja päeva vaheldumisega, on uuritud juba vähemalt 2400 aastat, mil kreeka laevakapten Androstenes kirjutas tamarindipuu lehtede orienteerumisest läbi ööpäeva. On jõutud teadmiseni, et unetuse üks põhjusi on ööpäevarütmi ehk peenemalt tsirkadiaanrütmi segiminek. Muuseas – inimese ööpäevarütm ei ühti Maa pöörlemise rütmiga, vaid on umbes 24 tundi ja 11 minutit. Isegi nüüdsed nobelistid vist ei tea, miks. See-eest on nad välja uurinud, milline geen kontrollib ööpäevarütmi. Selles abistas neid geneetikute lemmikloom äädikakärbes. Nad isoleerisid geeni, mis kodeerib valku, mis koguneb rakku öösel ja laguneb päeval. Nüüd teame, et ka teised paljuraksed reguleerivad oma ööpäevarütmi sama geeni toel.

Ameeriklased Jeffrey C. Hall (Brandelsi ja Maine’i Ülikoolid), Michael Rosbash (Brandelsi Ülikool) ja Michael W. Young (Rockefelleri Ülikool) lähenesid probleemile igaüks möödunud sajandi lõpukümnenditel veidi erinevalt, ent kokkuvõttes said teada, mida see täheühendiga PER tähistatav valk teeb. 1994. aastal avastas Young teisegi geeni, timeless ehk ajatu, mis kodeerib TIM nimelist valku ja on vajalik ööpäevakella õigeks tööks, tagades tagasiside.

Nii et teame, millised geenid on mängus, kui meie ööpäevakell õigesti ei käi, kuid kuidas neid parandada, on iseasi.

 

 

 

 

 

Kommenteeri

Telli Teadus.ee uudiskiri